• Title/Summary/Keyword: Nucleotide binding

Search Result 347, Processing Time 0.028 seconds

Characterization of the pcbD Gene Encoding 2-Hydroxy-6-Ox0-6-Phenylgexa-2,4-Dienoate Hydrolase from Pseudomonas sp. P20

  • Lim, Jong-Chul;Lee, Jeong-Rai;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Ki, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.258-263
    • /
    • 2000
  • 2-Hydroxy-6-oxo-6phenylhexa-2,4-dienoate (HOPDA) hydrolase catalyzes the hydrolytic cleavage of HOPDA to bemzpate and 2-hydroxypenta-2, 4-dienoate (HPD) during microbial catabolism of biphenyl and polychlorinated biphenyls. A HOPDA hydrolase gene (pcbD) was isolated from the genomic library of Pseudomonas sp. P20 and designated as pCNUO1201; a 7.5-kb XbaI DNA fragment from Pseudomonas sp. P20 was inserted into the pBluescript SK(+) XbaI site. E. coli HB101 harboring pCNU1201 exhibited HOPDA hydrolase activity. The open reading frame (ORF) corresponding to the pcbD gene consisted of 855 base pairs with an ATG initiation codon and a TGA termination codon. The ORF was preceded by a rebosome-binding sequence of 5'-TGGAGC-3' and its G+C content was 55 mol%. The pcbD gene of Pseudomonas sp. P20 was located immedeately downstream of the pcbC gene encoding 2,3- dihydroxybiphenyl 1,2-dioxygenase, and approximately 4-kb upstream of the pcbE gene encoding HPD hydratase. The pcbK gene was able to encode a polypeptide with a molecular weight of 31,732 containing 284 amino acid residues. The deduced amino acid sequence of the HOPDA hydrolase of Pseudomonas sp. P20 exhibited high identity (62%) with those of the HOPDA hydrolases of P. putida KF715, P. pseudoalcaligenes KF707, and Burkholderia cepacia LB400, and also significant homology with those of other hydrolytic enzymes including esterase, transferase, and peptidase.

  • PDF

Expression of Various Pattern Recognition Receptors in Gingival Epithelial Cells

  • Shin, Ji-Eun;Ji, Suk;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • Innate immune response is initiated by the recognition of unique microbial molecular patterns through pattern recognition receptors (PRRs). The purpose of this study is to dissect the expression of various PRRs in gingival epithelial cells of differentiated versus undifferentiated states. Differentiation of immortalized human gingival epithelial HOK-16B cells was induced by culture in the presence of high $Ca^{2+}$ at increased cell density. The expression levels of various PRRs in HOK-16B cells were examined by realtime reverse transcription polymerase chain reaction (RTPCR) and flow cytometry. In addition, the expression of human beta defensins (HBDs) was examined by real time RT-PCR and the amounts of secreted cytokines were measured by enzyme linked immunosorbent assay. In undifferentiated HOK-16B cells, NACHT-LRR-PYDcontaining protein (NALP) 2 was expressed most abundantly, and toll like receptor (TLR) 2, TLR4, nucleotide-binding oligomerization domain (NOD) 1, and NOD2 were expressed in substantial levels. However, TLR3, TLR7, TLR8, TLR9, ICE protease-activating factor (IPAF), and NALP6 were hardly expressed. In differentiated cells, the levels of NOD2, NALP2, and TLR4 were different from those in undifferentiated cells at RNA but not at protein levels. Interestingly, differentiated cells expressed the increased levels of HBD-1 and -3 but secreted reduced amount of IL-8. In conclusion, the repertoire of PRRs expressed by gingival epithelial cells is limited, and undifferentiated and differentiated cells express similar levels of PRRs.

Evidence of Tandem Repeat and Extra Thiol-groups Resulted in the Polymeric Formation of Bovine Haptoglobin: A Unique Structure of Hp 2-2 Phenotype

  • Lai, Yi An;Lai, I Hsiang;Tseng, Chi Feng;Lee, James;Mao, Simon J.T.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1028-1038
    • /
    • 2007
  • Human plasma Hp is classified as 1-1, 2-1, and 2-2. They are inherited from two alleles Hp 1 and Hp 2, but there is only Hp 1 in almost all the animal species. Hp 2-2 molecule is extremely large and heterogeneous associated with the development of inflammatory-related diseases. In this study, we expressed entire bovine Hp in E. coli as a $\alpha\beta$ linear form. Interestingly, the antibodies prepared against this form could recognize the subunit of native Hp. In stead of a complicated column method, the antibody was able to isolate bovine Hp via immunoaffinity and gelfiltration columns. The isolated Hp is polymeric containing two major molecular forms (660 and 730 kDa). Their size and hemoglobin binding complex are significantly larger than that of human Hp 2-2. The amino-acid sequence deducted from the nucleotide sequence is similar to human Hp 2 containing a tandem repeat over the $\alpha$ chain. Thus, the Hp 2 allele is not unique in human. We also found that there is one additional -SH group (Cys-97) in bovine $\alpha$ chain with a total of 8 -SH groups, which may be responsible for the overall polymeric structure that is markedly different from human Hp 2-2. The significance of the finding and its relationship to structural evolution are also discussed.

Discovering Novel Genes of poultry in Genomic Era

  • S.K. Kang;Lee, B.C.;J.M. Lim;J.Y. Han;W.S. Hwang
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2001
  • Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.

  • PDF

Expression Characterization, Polymorphism and Chromosomal Location of the Porcine Calsarcin-3 Gene

  • Wang, Heng;Yang, Shulin;Tang, Zhonglin;Mu, Yulian;Cui, Wentao;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1349-1353
    • /
    • 2007
  • Calcineurin is a calmodulin dependent protein that functions as a regulator of muscle cell growth and function. Agents capable of interacting with calcineurin could have important applications in muscle disease treatment as well as in the improvement of livestock production. Calsarcins comprise a family of muscle-specific calcineurin binding proteins which play an important role in modulating the function of calcineurin in muscle cells. Recently, we described the first two members of the calsarcin family (calsarcin-1 and calsarcin-2) in the pig. Here, we characterized the third member of the calsarcin family, calsarcin-3, which is also expressed specifically in skeletal muscle. However, unlike calsarcin-1 and calsarcin-2, the calsarcin-3 mRNA expression in skeletal muscle kept rising throughout the prenatal and postnatal development periods. In addition, radiation hybrid mapping indicated that porcine calsarcin-3 mapped to the distal end of the q arm of pig chromosome 2 (SSC2). A C/T single nucleotide polymorphism site in exon 5 was genotyped using the denaturing high performance liquid chromatography (DHPLC) method and the allele frequencies at this locus were significantly different among breeds.

Agronomic characteristics of stay-green mutant derived from an early-maturing rice variety 'Pyeongwon'

  • Won, Yong-Jae;Ji, Hyeon-So;Ahn, Eok-Keun;Lee, Jeong-Heui;Jung, Kuk-Hyun;Lee, Sang-Bok;Hong, Ha-Cheol;Hyun, Ung-Jo;Ha, Woon-Goo;Kim, Myeong-Ki;Kim, Byeong-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.72-72
    • /
    • 2017
  • We found a new stay-green mutant from 'Pyeongwon' which is an early-maturing rice variety in Korea. The mutant showed green leaves after grain ripening period and it maintained higher SPAD value than wild type rice plant and original variety 'Pyeongwon'. The stay-green trait in rice, three genes have been identified up to date. The non-yellow coloring1 (NYC1) gene encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The non-yellow coloring3 (NYC3) gene encodes a plastid-localizing alpha/beta hydrolase-fold family protein with an esterase/lipase motif. The Sgr gene encodes a novel chloroplast protein and regulates the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of chlorophylls and LHCPs during senescence. After sequencing the PCR products, we found a single nucleotide variation($A{\rightarrow}T$) in the NYC1 gene, which changes the amino acid lysine to methionine. The NYC1 gene encodes a short-chain dehydrogenase/reductase(SDR) protein. And we confirmed the co-segregation between SNP and stay-green trait from genotyping the progenies of the mutant.

  • PDF

Comparative proteome analysis of diploid and tetraploid root in Platycodon grandiflorum

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Yoo, Jang-Hawan;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.123-123
    • /
    • 2017
  • In spite of the potential medicinal significance and a wide range of pharmacologic properties of Platycodon grandiflorum, the molecular mechanism of its roots is still unknown. The present study was conducted to profile proteins from 3, 4 and 5 months aged diploid and tetraploid roots of Platycodon grandiflorum using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 68 differential expressed proteins were identified from the diploid root out of 767 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 29 differential expressed protein spots (${\geq}2-fold$) were analyzed using LTQ-FTICR MS whereas a total of 24 protein spots were up-regulated and 5 protein spots were down-regulated. On the contrary, in the case of tetraploid root, a total of 86 differential expressed proteins were identified from tetraploid root out of 1033 protein spots of which a total of 39 differential expressed protein spots (${\geq}2-fold$) were analyzed using LTQ-FTICR MS whereas a total of 21 protein spots were up-regulated and a total of 18 protein spots were down-regulated. It was revealed that the identified proteins from the explants were mainly associated with the nucleotide binding, oxidoreductase activity, transferase activity. Taken together, the identified proteins may be helpful to identify key candidate proteins for genetic improvement of plants.

  • PDF

Analysis of Porcine $\beta$-casein Gene Promoter by Site-directed Mutagenesis

  • Chung, Hee-Kyoung;Seong, Hwan-Hoo;Im, Seok-Ki;Lee, Hyun-Gi;Kim, Soon-Jeung;Lee, Poongyeong;Lee, Yun-Keun;Chang, Won-Kyong;Moosik Kwon
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.71-71
    • /
    • 2002
  • Promoters for milk proteins have been used far producing transgenic animals due to their temporal and spatial expression patterns. ${\beta}$-casein, a calcium-sensitive casein, is a major milk protein that corresponds ca. 30 per cent of total milk protein. Expression of ${\beta}$-casein is controlled by lactogenic hormones such as prolactin (PRL), composite response elements (CoREs) and transcription factors. CoREs are clusters of transcription factor binding sites containing both positive and negative regulatory elements. ${\beta}$-casein gene promoter contains various regions (CoREs) for gene transcription. We analyzed the promoter region by mutagenesis using exonuclease III and linker-scanning. Transcription control elements usually are positioned in 5'-flanking region of the gene. However, in some cases, these elements are located in other regions such as intron 1. The nucleotide sequences of ${\beta}$-casein promote. region has been reported (E12614). However, the properties of the promoter is not yet clear. In this study, we plan to investigate the properties of cis-regulating elements of porcine ${\beta}$-casein by mutation analysis and expression analysis using dual-luciferase repoter assay system.

  • PDF

Identification of Human LRG1 Polymorphisms and Their Genetic Association with Rheumatoid Arthritis

  • Jin, Eun-Heui;Chae, Soo-Cheon;Shim, Seung-Cheol;Kim, Hwan-Gyu;Chung, Hun-Taeg
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.77-83
    • /
    • 2008
  • Human leucine-rich alpha-2-glycoprotein 1 (LRG1) was first identified as a trace protein in human serum. The primary sequence of LRG1 includes repeated leucine residues and putative membrane-binding domains. But, there is no published information on the genetic variation of this gene. In this study, LRG1 was identified as one of several upregulated genes in RA patients. We examined the expression levels of LRG1 between an RA patient and a healthy control by RT-PCR and validated that LRG1 was highly expressed in RA patients compared with controls. We identified the possible variation sites and single nucleotide polymorphisms (SNPs) in the human LRG1 gene by direct sequencing and analyzed the association of genotype and allele frequencies between RA patients and a control group without RA. We further investigated the relationship between these polymorphisms and the level of RF or anti-CCP in RA patients. We identified a total of three SNPs(g.-678A>G, g.-404C>T and g.1427T>C) and two variation sites (g.-1198delA and g.-893delA) in the LRG1 gene. Our results suggest that polymorphisms of the LRG1 gene are not associated with the susceptibility of RA in the Korean population.

Identification of a Novel SNP Associated with Meat Quality in C/EBP${\alpha}$ Gene of Korean Cattle

  • Shin, S.C.;Kang, M.J.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.466-470
    • /
    • 2007
  • CCAAT/enhancer binding protein ${\alpha}$($C/EBP{\alpha}$) plays an important role in lipid deposition and adipocyte differentiation. In order to find genetic markers to improve the meat quality of Korean cattle, the bovine $C/EBP{\alpha}$ gene was chosen as a candidate gene to investigate its association with carcass and meat quality traits in Korean cattle. A single nucleotide polymorphism (SNP) was identified at position 271 (A/C substitution) of coding region in the $C/EBP{\alpha}$ gene. A PCR-RFLP procedure with restriction enzyme SmaI was developed for determining the marker genotypes. The frequencies of alleles C and A and were 0.374 and 0.626, respectively. The genotype frequencies for CC, AC and AA were 12.9, 49.0 and 38.1%, respectively, in Korean cattle population. The frequencies of genotype were in agreement with Hardy-Weinberg equilibrium. Association analysis indicated that the gene-specific SNP marker of $C/EBP{\alpha}$ showed a significant association with marbling score (p<0.05). The animals with AA genotype had higher marbling score than those with the AC or CC genotype. Although further studies are needed to validate our results, the $C/EBP{\alpha}$ gene could be useful as a genetic marker for carcass and meat quality traits in Korean cattle.