• Title/Summary/Keyword: Nucleotide binding

Search Result 351, Processing Time 0.031 seconds

Complete Genome Sequence Analysis of Two Divergent Groups of Sweet potato chlorotic fleck virus Isolates Collected from Korea

  • Kwak, Hae-Ryun;Kim, Jaedeok;Kim, Mikyeong;Seo, Jang-Kyun;Kim, Jeong-Soo;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.451-457
    • /
    • 2018
  • The Sweet potato chlorotic fleck virus (SPCFV), of the genus Carlavirus (family Betaflexiviridae), was first detected as one of several viruses infecting sweet potatoes (Ipomea batatas L.) in Korea. Out of 154 sweet potato samples collected in 2012 that were showing virus-like symptoms, 47 (31%) were infected with SPCFV, along with other viruses. The complete genome sequences of four SPCFV isolates were determined and analyzed using previously reported genome sequences. The complete genomes were found to contain 9,104-9,108 nucleotides, excluding the poly-A tail, containing six putative open reading frames (ORFs). Further, the SPCFV Korean isolates were divided into two groups (Group I and Group II) by phylogenetic analysis based on the complete nucleotide sequences; Group I and Group II had low nucleotide sequence identities of about 73%. For the first time, we determined the complete genome sequence for the Group II SPCFV isolates. The amino acid sequence identity in coat proteins (CP) between the two groups was over 90%, whereas the amino acid sequence identity in other proteins was less than 80%. In addition, SPCFV Korean isolates had a low amino acid sequence identity (61% CPs and 47% in the nucleotide-binding protein [NaBp] region) to that of Melon yellowing-associated virus (MYaV), a typical Carlavirus.

Characterization of the pcbE Gene Encoding 2-Hydroxypenta-2,4-Dienoate Hydratase in Pseudomonas sp. DJ-12

  • Lim, Jong-Chul;Lee, Jeongrai;Jang, Jeong-Duk;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Kim, Young-Soo
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.187-195
    • /
    • 2000
  • Nucleotide sequence extending 2,3-dihydroxybiphenyl 1,2-dioxygenase gene (pcbC) and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase gene (pcbD) of Pseudomonas sp. DJ-12 was previously analyzed and the two genes were present in the order of pcbD-pcbC preceded by a promoter from Pseudomonas sp. DJ-12. In this study, a 3.8-kb nucleotide sequence located downstream of the pcbC gene was analyzed to have three open reading frames (ORFs) that are designated as orf1, pcbE and orf2 genes. All of the ORFs were preceded by each ribosome-binding sequence of 5-GGAXA-3 (X=G or A). However, no promoter-like sequence and transcription terminator sequence were found in the analyzed region, downstream of pcbC gene. Therefore, the gene cluster appeared to be present in the order of pcbD-pcbC-orf1-pcbE-orf2 as an operon, which is unique organization characterized so far in biphenyl- and PCB-degrading bacteria. The orf1 gene was composed of 1,224 base pairs which can encode a polypeptide of molecular weight 44,950 containing 405 amino acid residues. A deduced amino acid sequence of the orf1 gene product exhibited 21-33% identity with those of indole dioxygenase and phenol hydroxylase components. The pcbE gene was composed of 783 base pairs encoding 2-hydroxypenta-2,4-dienoate hydratase involved in the 4-chlorobiphenyl catabolism. The orf2 gene was composed of 1,017 base pairs encoding a polypeptide of molecular weight 37,378 containing 338 amino acid residues. A deduced amino acid sequence of the orf2 gene product exhibited 31% identity with that of a nitrilotriacetate monooxygenase component.

  • PDF

Effects of Amiloride on $A_{1}$ Adenosine Receptor-Adenylyl Cyclase System in Rat Adipocytes (흰쥐 지방세포에 있어서 Amiloride의 $A_{1}$ Adenosine Receptor- Adenylyl Cyclase System에 대한 작용)

  • Park, Kyung-Sun;Lee, Myung-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.245-252
    • /
    • 1993
  • Amiloride is a potassium sparing duretic which specifically inhibits $Na{^+}$ channels. In the present study, we investigated the possible interaction of amiloride with $A_1$ adenosine receptors-adenylyl cyclase system in crude adipocytic plasma membrane fractions prepared from Sprague-Dawley rats. When the function of $G_i$ protein (inhibitory guanine nucleotide binding protein) was assessed by determining the effects of GTP on isoproterenol-stimulated adenylyl cyclase activity, the inhibitory effect of high concentrations of GTP was not observed in the presence of amiloride. In contrast, the adenosine receptor-mediated inhibition of the enzyme activity, as determined empolying 2-chloroadenosine, was either unchanged or even more enhanced by amiloride depending on the concentrations of 2-chloroadenosine. Thus, it appears that GTP- and receptor-mediated inhibitory function of $G_{i}$ proteins can be separated from one another. Receptor-mediated function of $G_{s}$ protein did not appear to be significantly affected by amiloride, since the inhibition of isoproterenol-stimulated adenylyl cyclase activity by propranolol under the same conditions was not significantly altered by amiloride. The enhancement of 2-chloroadenosine-mediated inhibition of adenylyl cyclase by amiloride was maintained in the presence of 150 mM NaCl. In summary, these results suggest that amiloride interacts both with $A_{l}$ adenosine receptors and with $G_i$ proteins in adipocytic membranes. Its binding to the $A_1$ adenosine receptors appears to facilitate the coupling of the receptors with $G_i$ proteins thereby enhancing the inhibition of isoproterenol-stimulated adenylyl cyclase activity by $A_1$ adenosine agonist, and the direct interaction with $G_i$ proteins appears to remove the GTP-dependent inhibitory effect on adenylyl cyclase activity.

  • PDF

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Mapping, Tissue Distribution and Polymorphism of Porcine Retinol Binding Protein Genes (RBP5 and RBP7)

  • Gong, W.H.;Tang, Z.L.;Han, J.L.;Yang, S.L.;Wang, H.;Li, Y.;Li, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1544-1550
    • /
    • 2008
  • The retinoids (vitamin A and its derivatives) play a critical role in vision, growth, reproduction, cell differentiation and embryonic development. Using the IMpRH panel, porcine cellular retinol binding protein genes 5 and 7 (RBP5 and RBP7) were assigned to porcine chromosomes 5 and 6, respectively. The complete coding sequences (CDS) of the RBP5 and RBP7 genes were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) method, and the deduced amino acid sequences of both genes were compared to human corresponding proteins. The mRNA distributions of the two genes in adult Wuzhishan pig tissues (lung, skeletal muscle, spleen, heart, stomach, large intestine, lymph node, small intestine, liver, brain, kidney and fat) were examined. A total of nine single nucleotide polymorphisms (SNPs) were identified in two genes. Three of these SNPs were analyzed using the polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) method in Laiwu, Wuzhishan, Guizhou, Bama, Tongcheng, Yorkshire and Landrace pig breeds. Association analysis of genotypes of these SNP loci with economic traits was done in our experimental populations. Significant associations of different genotypes of $RBP5-A/G^{63}$, $RBP5-A/G^{517}$ and $RPB5-T/C^{intron1-90}$ loci with traits including maximum carcass length (LM), minimum carcass length (LN), marbling score (MS), back fat thickness at shoulder (SBF), meat color score (MCS) and hematocrit (HCT) were detected. These SNPs may be useful as genetic markers in genetic improvement for porcine production.

Effects of Salviae miltiorrhizae Radix Extract on Gene Expression of Dendritic cells. (단삼이 수지상 세포의 유전자 발현에 미치는 영향)

  • Chiang, Wen-Lih;Kim, Jong-Han;Choi, Jeong-Hwa;Park, Su-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.52-68
    • /
    • 2008
  • Objectives and Methods : Salviae miltiorrhizae Radix (SMR) promotes blood circulation to remove blood stasis, cools the blood to relieve carbuncle, clears away heat from the heart and tranquilizes the mind. This study was designed to investigate the effects of SMR on immuno-potentiative action in terms of changes in the genetic profile of dendritic cells (DC) using by microarray analysis. Results and Conclusion: In this experiment, treatments with more than 250 ${\mu}g/ml$ upto 1000 ${\mu}g/ml$ of SMR elevated the proliferation rates of DC. Microscopic observations confirmed the tendency on proliferation rates. Expression levels of genes related with cellular methabolic process, cell communication, and macromolecule metabolic process were elevated by treatment with SMR in comparison of functional distribution in a Biological Process. In molecular functions, expression levels of genes related with receptor activation, nucleotide binding and nucleic acid binding were elevated. In cellular components, expression levels of genes related to cellular membrane-bound organelles were elevated. In addition, expression levels of genes related to Wnt signalling pathways and the glycerophospholipid metabolism were elevated through analysis using pathway analysis between up-and down-regulated genes in cells treated with SMR. Finally, genes related to JAK2, GRB2, CDC42, SMAD4, B2M, FOS and ESRI located the center of Protein interaction network of genes through treatment with SMR.

  • PDF

Isolation and characterization of BrMDR1 a novel MDR-type ATP-binding cassette (ABC) transporter in Brassica rapa L.

  • Lee, Sun-Yong;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Korean Journal of Plant Resources
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2009
  • A cDNA clone encoding a MDR-like ABC transporter protein was isolated from Brassica rapa seedlings, through rapid amplification of cDNA ends (RACE). This gene (named as Brmdr 1; GenBank accession no.: DQ296184 ) had a total length of 4222 bp with an open reading frame of 3900 bp, and encoded a predicted polypeptide of 1300 amino acids with a molecular weight of 143.1 kDa. The BrMDR1 protein shared 71.0, 62.5, 60.0 and 58.2% identity with other MDR proteins isolated from Arabidopsis thaliana (AAN28720), Coptis japonica (CjMDR), Gossypium hirsutum (GhMDR) and Triticum aestivum (TaMDR) at amino acid level, respectively. Southern blot analysis showed that Brmdr1 was a low-copy gene. Expression pattern analysis revealed that Brmdr1 constitutively expressed in the root, stem petals and stamens, but with lower expression in leaves and open flowers. The domains analysis showed that BrMDR1 protein possessed two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) arranging in "TMD1-NBD1-TMD2-NBD2" direction, which is consistent with other MDR transporters. Within NBDs three characteristic motifs common to all ABC transporters, "Walker A", "Walker B" and C motif, were found. These results indicate that BrMDR1 is a MDR-like ABC transporter protein that may be involved in the transport and accumulation of secondary metabolites.

Modulation of the Cytochrome c Oxidase Activity by ATP: Implications for Mitochondrial Respiratory Control

  • Park, Nan-Hyang;Chun, Sun-Bum;Han, Tae-Young;Han, Sang-Hwa
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.300-307
    • /
    • 1996
  • ATP and ADP are potential regulators of mitochondtial respiration and at physiological concentrations they affect the rate of electron transfer between cytochrome c and cytochrome c oxidase. The electron transfer, however, depends on the electrostatic interaction between the two proteins. In order to exclude any nonspecific ionic effects by these polyvalent nucleotides, we used 2'-O-(2,4,6)trinitro(TNP)-derivatives of ATP and ADP which have three orders of magnitude higher affinity for cytochrome c oxidase. A simple titration of the fluorescence intensity of TNP by cytochrome c oxidase showed a binding stoichiometry of 2:1 cytochrome c:cytochrome c oxidase. Higher ionic strength was required for TNP-ATP than for TNP-ADP to be dissociated from cytochrome c oxidase, indicating that the negative charges on the phosphate group are at least partially responsible for the binding. In both spectrophotometric and polarographic assays, addition of ATP (and ADP to a less extent) showed an enhanced cytochrome c oxidase activity. Both electron paramagnetic resonance and fluorescence spectra indicate that there is no Significant change in the cytochrome c-cytochrome c oxidase interaction. Instead, reduction levels of the cytochromes at steadystate suggest that the increased activity of nucleotide-bound cytochrome c oxidase is due to faster electron transfer from cytochrome ${\alpha}$ to cytochrome ${\alpha}_3$, which is known to be the fate limiting step in the oxygen reduction by cytochrome c oxidase.

  • PDF

Protein variation and involvement of insulin-like growth factor during embryonic development in the olive flounder Paralichthys olivaceus

  • Kim, Kang-Woong;Nam, Taek Jeong;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2018
  • Insulin-like growth factors (IGFs), along with IGF-binding protein and IGF receptor, are well-known regulators in the growth and survival of vertebrates. In this study, we investigated the involvement of IGFs and protein variation during embryonic development of the olive flounder (Paralichthys olivaceus). Morphological stages were divided into six main developments as blastula, gastrula, cephalization, cranial regionalization, tail lift, and hatch. During embryonic development, protein variation was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry/mass spectrometry. In addition, the mechanism of signaling of IGF-I receptor was examined using immuno-blot analysis. We found marked changes in protein expression at four stages of embryonic development and identified proteins as belonging to the vitellogenin 2 family. As development progresses, expression of IGF-II, phosphotyrosine, and phospho-Akt increased, while expression of growth factor receptor-bound protein 2 (GRB2) and one of guanine-nucleotide-binding proteins (Ras) decreased. These results provide basic information on the IGF system in the embryonic development of the olive flounder.

Purification and Cloning of o Protein Secreted from Lactobacillus acidophilus

  • Han, Seo-Yeong;Lee, Yeong-Seon;Im, Jeong-Bin;Hwang, Deok-Su
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.355-359
    • /
    • 1998
  • Among the proteins secreted from Lactobacillus acidophilus KCTC 3151, a 36 kDA and 24 kDa protein, whose amounts were relatively abundant, were purified and their N-terminal amino acid sequences determined. The N-terminal amino acid sequence of 36 kDa protein exhibited high homology with thymidine phosphorylase and glyceraldehyde-3-phosphate dehydrogenase. The N-terminal amino acid sequence of the 24 kDa protein did not show significant homology with proteins in Protein Data Base nor Gene Bank. Nucleotide sequence of the gene encoding 36 kDa protein indicates that the protein possesses the domains for a-helical, phosphate binding and pyrimidine binding sites, which are also shown in thymidine phosphorylases. Also, the protein contains conserved domains of dehydrogenase II and III. However, the activity of thymidine phosphorylase or glyceraldehyde-3-puospnate dehydrogenase could not be detected in the purified fractions of the 36 kDa protein.

  • PDF