• 제목/요약/키워드: Nucleophilic additions

검색결과 6건 처리시간 0.015초

The Effect of Solvent on the $\alpha$-Effect(3): Nucleophilic Substitution Reactions of Aryl Acetates in $MeCN-H_2O$ Mixtures of Varying Compositions

  • Um Ik-Hwan;Hahn Gee-Jung;Lee Gwang-Ju;Kwon Dong-Song
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권6호
    • /
    • pp.642-647
    • /
    • 1992
  • Second-order rate constants have been measured spectrophotometrically for the reactions of substituted phenyl acetates with butane-2,3-dione monoximate and p-chlorophenoxide anions in MeCN-H$_2$O mixtures of varying compositions. The reaction rate, unexpectedly, decreased remarkably upon initial additions of MeCN to H$_2$O up to 30-40 mole ${\%}$ MeCN, and followed by a gradual increase upon further additions of MeCN. The change in solvent composition also influenced the magnitude of the ${\alpha}$-effect, i.e., the ${\alpha}$-effect increased as the mole ${\%}$ MeCN increased. The solvent dependent ${\alpha}$-effect for the present system appears to indicate that the differential solvation between the ${\alpha}$-effect nucleophile and the corresponding normal nucleophile is not solely responsible but the difference in the transition-state stabilization is also responsible for the ${\alpha}$ -effect in organic solvent-rich region.

A Mechanistic Study on the Nucleophilic Addition Reactions of Benzylamines to the Activated Olefins

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1195-1198
    • /
    • 2008
  • Kinetic studies of the additions of benzylamines to a noncyclic dicarbonyl group activated olefin, methyl $\alpha$-acetyl-$\beta$ -phenylacrylates (MAP), in acetonitrile at 30.0 ${^{\circ}C}$ are reported. The rates are lower than those for the cyclic dicarbonyl group activated olefins. The addition occurs in a single step with concurrent formation of the $C_\alpha$ -N and $C_\beta$ -H bonds through a four-center hydrogen bonded transition state. The kinetic isotope effects ($k_H/k_D$ > 1.0) measured with deuterated benzylamines ($XC_6H_4CH_2ND_2$) increase with a stronger electron acceptor substituent ($\delta\sigma$ X > 0) which is the same trend as those found for other dicarbonyl group activated series (1-4). The sign and magnitude of the cross-interaction constant, ρXY, is comparable to those for the normal bond formation processes in the $S_N2$ and addition reactions. The relatively low ${\Delta}H^\neq$ and large negative ${\Delta}S^\neq$ values are also consistent with the mechanism proposed.

Alkali Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Benzoate with Alkali Metal Ethoxides in Anhydrous Ethanol: Unusually High Na+ Ion Selectivity

  • Um, Ik-Hwan;Lee, Seung-Eun;Hong, Yeon-Ju;Park, Jee-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.117-121
    • /
    • 2008
  • Pseudo-first-order rate constants (kobsd) have been measured spectrophotometrically for nucleophilic substitution reactions of 5-nitro-8-quinolyl benzoate (5) with alkali metal ethoxides, EtO?M+ (M+ = Li+, Na+ and K+) in anhydrous ethanol (EtOH) at 25.0 0.1 C. The plots of kobsd vs. [EtO?M+] exhibit upward curvatures, while the corresponding plots for the reactions of 5 with EtO?Na+ and EtO?K+ in the presence of complexing agents, 15-crown-5-ether and 18-crown-6-ether are linear with rate retardation. The reactions of 5 with EtO?Na+ and EtO?Li+ result in significant rate enhancements on additions of Na+ClO4, indicating that the M+ ions behave as a catalyst. The dissociated EtO and ion-paired EtOM+ have been proposed to react with 5. The second-order rate constants for the reactions with EtO (kEtO) and EtOM+ (kEtOM+) have been calculated from ion-pairing treatments. The kEtO and kEtOM+ values decrease in the order kEtONa+ > kEtOK+ > kEtOLi+ > kEtO, indicating that ion-paired EtOM+ species are more reactive than the dissociated EtO ion, and Na+ ion exhibits the largest catalytic effect. The M+ ions in this study form stronger complex with the transition state than with the ground state. Coordination of the M+ ions with the O and N atoms in the leaving group of 5 has been suggested to be responsible for the catalytic effect shown by the alkali metal ions in this study.