• Title/Summary/Keyword: Nuclear technique

Search Result 1,299, Processing Time 0.066 seconds

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

A formal approach to support the identification of unsafe control actions of STPA for nuclear protection systems

  • Jung, Sejin;Heo, Yoona;Yoo, Junbeom
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1635-1643
    • /
    • 2022
  • STPA (System-Theoretic Process Analysis) is a widely used safety analysis technique to identify UCAs (Unsafe Control Actions) resulting in potential losses. It is totally dependent on the experience and ability of analysts to construct an information model called Control Structures, upon which analysts try to identify unsafe controls between system components. This paper proposes a formal approach to support the manual identification of UCAs, effectively and systematically. It allows analysts to mechanically extract Process Model, an important element that makes up the Control Structures, from a formal requirements specification for a software controller. It then concisely constructs the contents of Context Tables, from which analysts can identify all relevant UCAs effectively, using a software fault tree analysis technique. The case study with a preliminary version of a Korean nuclear reactor protections system shows the proposed approach's effectiveness and applicability.

Edge Detection Method for Inspection of Nuclear Fuel Rods (원전연료 검사를 위한 에지 검출 기법)

  • Weon, La-Kyoung;Rhyu, Keel-Soo;Kim, Nam-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.46-53
    • /
    • 2013
  • An inspection of nuclear fuel rods should be performed at remoteness from risks of high level radioactivity, and accuracy is required. Currently, inspection of the nuclear fuel rods is operated to monitor the video that recording an original nuclear fuel rods at remoteness because of the risks of radioactivity. In this paper, it is an implementation of the system was carried out in the process according to the image processing inspection of the nuclear fuel rods. The nuclear fuel rods are configured to use a bundle of plurality, in the image processing technology to verify this, the edge detection method is useful. We suggest to DoG technique to add threshold for the nuclear fuel rod edge detections. This is the new technique that optimized DoG. It is to deal with DoG and threshold to dual process. In this way, after detecting an edge of the nuclear fuel rods, by running a nuclear fuel rod inspection algorithm to determine the status of nuclear fuel rods. We applied the system using the new algorithm, and confirmed an excellent characteristic. In this study, it is considered to be able to be carried out more easily and securely inspect of nuclear fuel rods.

Development of Phased Array Ultrasonic Testing Technique for Nuclear Power Plant Cast Piping Weld (원자력발전소 주조 배관 용접부 위상배열 초음파검사 기술 개발)

  • Yoon, Byungsik;Yang, Seunghan;Kim, Yongsik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Cast austenitic stainless steel(CASS) is used in the primary cooling piping system of nuclear power plant for it's relative low cost, corrosion resistance and easy of welding. However, the coarse-grain structure of cast austenitic stainless steel can strongly affect the inspectability of ultrasonic testing. The major problems encountered during inspection are beam skewing, high attenuation and high background noise of CASS component. So far, the best inspection performance involving CASS components have been achieved using low frequency TRL(Transmitter/Receiver side-by-side L wave) angle beam probe. But TRL technique could not detect shallow defect and it contains an uncertainty for sizing capability. Currently, most of researchers are studying to overcome these challenge issue. In this study, low-frequency phased array TRL technique used to detect and sizing the flaws in CF8A cast austenitic stainless steel.As conclusion, we could detect and size not only axial flaw but also circumferential flaw using low frequency phased array technique.

  • PDF