• Title/Summary/Keyword: Nuclear spent fuel

Search Result 964, Processing Time 0.026 seconds

Development of risk assessment framework and the case study for a spent fuel pool of a nuclear power plant

  • Choi, Jintae;Seok, Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1127-1133
    • /
    • 2021
  • A Spent Fuel Pool (SFP) is designed to store spent fuel assemblies in the pool. And, a SFP cooling and cleanup system cools the SFP coolant through a heat exchanger which exchanges heat with component cooling water. If the cooling system fails or interfacing pipe (e.g., suction or discharge pipe) breaks, the cooling function may be lost, probably leading to fuel damage. In order to prevent such an incident, it is required to properly cool the spent fuel assemblies in the SFP by either recovering the cooling system or injecting water into the SFP. Probabilistic safety assessment (PSA) is a good tool to assess the SFP risk when an initiating event for the SFP occurs. Since PSA has been focused on reactor-side so far, it is required to study on the framework of PSA approach for SFP and identify the key factors in terms of fuel damage frequency (FDF) through a case study. In this study, therefore, a case study of SFP-PSA on the basis of design information of APR-1400 has been conducted quantitatively, and several sensitivity analyses have been conducted to understand the impact of the key factors on FDF.

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

Conceptual Design for Repackaging of PWR Spent Nuclear Fuel (경수로 사용후핵연료 재포장 개념(안) 수립)

  • Sang-Hwan Lee;Chang-Min Shin;HyunGoo Kang;Chun-Hyung Cho;HaeRyong Jung
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.519-532
    • /
    • 2023
  • Spent nuclear fuel(SNF) is stored in nuclear power plants for a certain period of time and then transported to an interim storage facility. After that, SNF is finally repackaged in a disposal canister at an encapsulation plant for final disposal. Finland and Sweden, leading countries in SNF disposal technology, have already completed designing of spent fuel encapsulation plant. In particular, the encapsulation plant construction in Finland is near completion. When it comes to South Korea, as the amount of SNF production and disposal plan is different from those in Finland and Sweden, it is difficult to apply the concepts of these contries as is. Therefore, it is necessary to establish the spent fuel repackaging concept and to derive each operating and repackaging procedures by considering annual disposal plan of South Korea. The results of this study is expected to be used to establish the concept of optimized encapsulation plant through further research.

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

Realistic thermal analysis of the CANDU spent fuel dry storage canister

  • Tae Gang Lee;Taehyeon Kim;Taehyung Na;Byongjo Yun;Jae Jun Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4597-4606
    • /
    • 2023
  • Thermal analysis of the CANDU spent fuel dry storage canister is very important to ensure the integrity of the spent fuel. The analyses have been conducted using a conservative approach, with a particular focus on the peak cladding temperature (PCT) of the fuel rods in the canister. In this study, we have performed a realistic thermal analysis using a computational fluid dynamics (CFD) code. The canister contains 9 fuel bundle baskets. A detailed analysis of even a single basket requires significant computational resources. To overcome this challenge, we replaced each basket with an equivalent heat conductor (EHC), of which effective thermal conductivity (ETC) is developed from the results of detailed CFD calculations of a fuel bundle basket. Then, we investigated the effects of some conservative models, ultimately aiming at a realistic analysis. The results revealed: (i) The influence of convective heat transfer in the basket cannot be ignored, but it's less significant than expected. (ii) Modeling of the lifting rod is crucial, as it plays a decisive role in axial heat transfer at the center of the canister and significantly reduces the PCT. (iii) Convection within the canister is very important, as it not only reduces the PCT but also shifts its location upwards.

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

Estimating spent fuel burnup with Neutron measurements: A Practical Rule of Thumb Equation

  • Kwangheon Park;Sohee Cha;Jinhyun Sung;Yunsik Kim;Younghwan Choi;Moonoh Kim;Heymin Park;Yangsoo Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4219-4226
    • /
    • 2024
  • We present a concise equation correlating the burnup of spent nuclear fuel (SF) with the neutron count rate, developed through comprehensive data analysis from Origen-ARP and MCNP codes. This equation is applicable to Fork detectors, commonly used for verifying SF assemblies before their transfer to new storage sites. The detector is assumed to be a helium-3 detector. The reaction rate (RR) in the 3He detector is influenced by Total Neutron Source Intensity (TNSI), net neutron multiplication, and neutron capture during transit to the detector. TNSI emerges as the most influential factor. Two scenarios were explored: one involving pure water and the other with water containing 2000 ppm of boron. The characteristics of the concise equation are also analyzed.

A Comparative Study on the Economics of Reprocessing and Direct Disposal of Nuclear Spent Fuel (사용후 핵연료의 제처리와 직접 처분의 경제성 비교 연구)

  • Kang, Seong-Ku;Song, Jong-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Nuclear fuel cycle choices and costs are important in considering energy policies, fuel diversity, security of supply and associated social and environmental impacts. Particularly, the nuclear spent fuel is very important in view of high activity and the need of long term management. This study focuses on the comparison of reprocessing and direct disposal of nuclear spent fuel in terms of cost, safety and public acceptability. The results of the study show that the direct disposal is about 7% more economical than the reprocessing. In terms of safety, the results show that the risk of vitrified HLW (high-level radioactive waste) is less than directly disposed spent fuel. For the public acceptability, both of the methods are not well understood and therefore they are not accepted. In conclusion, it is necessary to guarantee the safety of the both spent fuel processing methods through continuous development of associated technology and to have a fuel cycle policy which should consider not only the economics but also social and environmental impacts.

  • PDF