• Title/Summary/Keyword: Nuclear small subunit ribosomal RNA

Search Result 11, Processing Time 0.019 seconds

Cloning and Characerization of the Ribosomal RNA Gene from Gonyaulax polyedra

  • Lee, Hee-Gyun;Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.515-523
    • /
    • 2001
  • The dinoflagellates have some primitive nuclear features and are evolutionarily intermediate between prokaryotes and eukaryotes. The small subunit ribosomal RAN gene, the 5.8S ribosomal RNA gene, and the internal transcribed spacer (ITS) of Gonyaulax polyedra were cloned, and their sequences were analyzed to better understand their evolutionary position. The small subunit ribosomal RNA gene was 1,794 nt long, the large subunit ribosomal RNA gene was approximately 3,500 nt long, and the 5.8S ribosomal RNA gene was 159 nt long. The first internal transcribed spacer (ITS1) was 191 nt long, and the second internal transcribed spacer (ITS2) was 185 nt long. The intergenic spacer of the ribosomal RNA gene (IGS) was about 2,200 nt long, indicating that 5,800 nt of transcribed sequences were separated by roughly 2,200 nt of intergenic spacer. The ribosomal RNA genes were repeated many times and arranged in a head-to-tail, tandemly repeated manner. The repeating unit of ribosomal RNA gene of G. polyedra was proposed to be 8,000 nt long. Based on the lengths of ribosomal RNA, sequence alignments with representative organisms, and phylogenetic analysis on ribosomal RNA, G. polyedra appears to be one of the alveolates branched from the eukaryotic crown and, among dinoflagellates, it seems to not have emerged early.

  • PDF

Phylogenetic Relationships of the Aphyllophorales Inferred from Sequence analysis of Nuclear Small Subunit Ribosomal DNA

  • Kim, Seon-Young;Jung, Hack-Sung
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.122-131
    • /
    • 2000
  • Phylogenetic classification of the Aphyllophorales was conducted based on the analysis of nuclear small subunit ribosomal RNA (nuc SSU rDNA) sequence. Based on phylogenetic groupings and taxonomic characters, 16 families were recognized and discussed. Although many of the characters had more or less homoplasies, miroscopic characters such ad the mitic system and clamp, spore amyloidity and rot type appeared to be important in the classification of the Aphyllophorales. Phylogenetically significant families were newly defined to improve the classification of the order Aphyllophorales.

  • PDF

Phylogenetic Relationships of the Polyporaceae Based on Gene Sequences of Nuclear Small Subunit Ribosomal RNAs

  • Kim, Seon-Young;Jung, Hack-Sung
    • Mycobiology
    • /
    • v.29 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • The Polyporaceae is a chaotic mass of genera having poroid hymenophores in the Aphyllophorales. To classify the Polyporaceae into more natural groups, phylogenetic analyses were performed using nuclear small subunit ribosomal DNA sequences. Thirty-six species from the families of the Polyporaceae, the Hymenochaetaceae, the Ganodermataceae, the Corticiaceae, the Bondarzewiaceae, the Meruliaceae, the Steccherinaceae and the Lentinaceae were phylogenetically compared. By performing maximum parsimony analysis, seven phylogenetically meaningful groups were identified and discussed. The hyphal system, presence or absence of clamps, and the type of rot were found as important characters in defining the groups. Each group was phylogenetically significant enough to be a core member of each family when the Polyporaceae was split into smaller and more natural families.

  • PDF

Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA

  • Rahman, Md Moshiur;Yagita, Kengi;Kobayashi, Akira;Oikawa, Yosaburo;Hussein, Amjad I.A.;Matsumura, Takahiro;Tokoro, Masaharu
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear subconformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.

Utility of taxon-specific molecular markers for the species identification of herbarium specimens: an example from Desmarestia japonica (Phaeophyceae, Desmarestiales) in Korea

  • Lee, Sang-Rae;Lee, Eun-Young
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.3
    • /
    • pp.8.1-8.6
    • /
    • 2018
  • Desmarestia japonica (Phaeophyceae, Desmarestiales) was recently established from the Japanese ligulate Desmarestia and is morphologically similar to D. ligulata. This species has been reported only from Japan. However, the taxonomic reports based on additional regional distributions are needed to clarify this taxonomic entity and its species boundaries. Because Desmarestia species have restricted distributions in Korea, we reexamined herbarium specimens of D. ligulata deposited at the National Institute of Biological Resources (South Korea). To improve the amplification efficiency of the polymerase chain reaction and avoid contamination by the DNA of other organisms, we developed taxon-specific molecular markers suitable for DNA barcoding of Desmarestia species. Nuclear ribosomal small subunit RNA (18S rDNA) and mitochondrial cytochrome c oxidase 1 (cox1) regions were selected as target DNA. As a result, both were successfully isolated from herbarium specimens of D. japonica acquired over 10 years. These molecular markers provide useful genetic information for herbarium specimens for which conventional molecular analysis is challenging.

New Record of Two Marine Ciliates (Ciliophora: Spirotrichea) in South Korea

  • Kim, Kang-San;Jung, Jae-Ho;Min, Gi-Sik
    • Animal Systematics, Evolution and Diversity
    • /
    • v.29 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • Two marine hypotrichous ciliates, Anteholosticha petzi and Ponturostyla enigmatica, were collected from the Yellow Sea and the Korea Strait, respectively, and described using live observation and protargol-impregnated specimens. Furthermore, the nuclear small subunit ribosomal RNA gene of each was sequenced and compared to previously annotated sequences retrieved from the GenBank. Anteholosticha petzi is characterized by 3 frontal cirri (FC), 2 frontoterminal cirri (FTC), 8-12 transverse cirri (TC), 1 buccal cirrus (BC), 9-12 midventral pairs (MP), 3 bipolar dorsal kineties (DK), and 3 types of colorless cortical granules. Ponturostyla enigmatica is characterized by 8 FC, 5 ventral cirri (VC), 5-7 TC, 6-7 marginal rows (MR) on each side, 4 complete and 2-3 partial DK, and greenish cortical granules. This is the first identification and description of these 2 species, A. petzi and P. enigmatica, in South Korea.

Phylogenetic Evaluation of Stereoid Fungi

  • Yoon, Sung-Il;Kim, Seon-Young;Lim, Young-Woon;Jung, Hack-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.406-414
    • /
    • 2003
  • Phylogenetic relationships of stereoid fungi were examined by comparing nuclear small subunit ribosomal RNA gene sequences. Stereoid taxa were scattered into several groups and the traditional Stereaceae proved to be polyphyletic. Srereum and Xylobolus were classified in the Stereaceae as the core group of stereoid fungi, and Amylostereum was grouped with Echinodontium of the Echinodontiaceae. Chondrostereum and Cystosrereum were clustered in the Stereaceae sensu Donk and Cymatoderma and Podoscypha in the Podoscyphaceae Reid. Columnocystis abietinum and C. ambigua were grouped with Meripilus giganteus and proved to be not included in the Chaetodermataceae sensu Nakasone. Lopharia cinerascens and L. mirabilis were grouped together but L. spadicea was unrelated to them, indicating that Lopharia is heterogeneous at a generic level.

Taxonomic Revision of Notohymena gangwonensis (Protozoa: Ciliophora), with Notes on Its Cortical Granules and Scanning Electron Micrographs

  • Moon, Ji Hye;Kim, Kang-San;Chae, Kyu Seok;Min, Gi-Sik;Jung, Jae-Ho
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • From a moss sample, we isolated and identified Notohymena gangwonensis Kim et al., 2019 based on morphological and molecular data. The moss and type population has completely identical 18S rRNA (nuclear small subunit ribosomal RNA) gene sequences and both are highly similar in morphological and morphometric attributes, except for the diameter and arrangement of the cortical granules. Thus, we reexamined the type materials(i.e., micrographs and gDNA) and resulted in finding mistakes made by the authors of the species. Based on these data and supporting materials newly obtained (i.e., internal transcribed spacer [ITS] 1, ITS2, 5.8S, and partial 28S rDNA sequences, and scanning electron micrographs), we provide improved diagnosis of the species to clarify its identity. In addition, a key for Notohymena species is provided.

Molecular Monitoring of Plankton Diversity in the Seonakdong River and Along the Coast of Namhae (분자 모니터링을 이용한 서낙동강과 남해 연안 플랑크톤 군집 분석)

  • Kim, Bo-Kyung;Lee, Sang-Rae;Lee, Jin-Ae;Chung, Ik-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • The biodiversity of eukaryotic plankton has commonly been used to evaluate the status of aquatic ecosystems. Therefore, an accurate and rapid method for species identification is needed to reveal the biodiversity of environmental water samples. To date, molecular methods have provided a great deal of information that has enabled identification of the hidden biodiversity in environmental samples. In this study, we utilized environmental polymerase chain reaction (PCR) and constructed the 18S nuclear ribosomal RNA clone library from environmental water samples in order to develop more efficient methods for species identification. For the molecular analysis, water samples were collected from the Seonakdong River (Gimhae Bridge) and the coast of Namhae,(Namhaedo). Colony PCR and restriction fragment length polymorphism of PCR (PCR-RFLP) were then adopted to isolate unique clones from the 18S rDNA clone library. Restriction fragment length polymorphism pattern analysis of the Gimhae Bridge sample revealed 44 unique clones from a total of 60 randomly selected clones, while analysis of the Namhae sample revealed 27 unique clones from 150 clones selected at random. A BLAST search and subsequent phylogenetic analysis conducted using the sequences of these clones revealed hidden biodiversity containing a wide range of taxonomic groups (Heterokontophyta (7), Ciliophora (23), Dinophyta (1), Chytridiomycota (1), Rotifera (1) and Arthropoda (11) in the Gimhae Bridge samples Ciliophora (4), Dinophyta (3), Cryptophyta (1), Arthropoda (19) in the Namhae samples). Therefore, the molecular monitoring method developed here can provide additional information regarding the biodiversity and community structure of eukaryotic plankton in environmental samples and helps construct a useful database of biodiversity for aquatic ecosystems.