• Title/Summary/Keyword: Nuclear rod

검색결과 702건 처리시간 0.022초

Analysis and optimization research on latch life of control rod drive mechanism based on approximate model

  • Ling, Sitong;Li, Wenqiang;Yu, Tianda;Deng, Qiang;Fu, Guozhong
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4166-4178
    • /
    • 2021
  • The Control Rod Drive Mechanism (CRDM) is an essential part of the reactor, which realizes the start-stop and power adjustment of the reactor by lifting and lowering the control rod assembly. As a moving part in CRDM, the latch directly contacts with the control rod assembly, and the life of latch is closely related to the service life of the reactor. In this paper, the relationship between the life of the latch and the step stress, friction stress, and impact stress in the process of movement is analyzed, and the optimization methodology and process of latch life based on the approximate model are proposed. The design variables that affect the life of the latch are studied through the experimental design, and the optimization objective of design variables based on the latch life is established. Based on this, an approximate model of the life of the latch is built, and the multi-objective optimization of the life of the latch is optimized through the NSGA-II algorithm.

Stability and nonlinear vibration of a fuel rod in axial flow with geometric nonlinearity and thermal expansion

  • Yu Zhang;Pengzhou Li;Hongwei Qiao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4295-4306
    • /
    • 2023
  • The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

Neutronic design and evaluation of the solid microencapsulated fuel in LWR

  • Deng, Qianliang;Li, Songyang;Wang, Dingqu;Liu, Zhihong;Xie, Fei;Zhao, Jing;Liang, Jingang;Jiang, Yueyuan
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3095-3105
    • /
    • 2022
  • Solid Microencapsulated Fuel (SMF) is a type of solid fuel rod design that disperses TRISO coated fuel particles directly into a kind of matrix. SMF is expected to provide improved performance because of the elimination of cladding tube and associated failure mechanisms. This study focused on the neutronics and some of the fuel cycle characteristics of SMF by using OpenMC. Two kinds of SMFs have been designed and evaluated - fuel particles dispersed into a silicon carbide matrix and fuel particles dispersed into a zirconium matrix. A 7×7 fuel assembly with increased rod diameter transformed from the standard NHR200-II 9×9 array was also introduced to increase the heavy metal inventory. A preliminary study of two kinds of burnable poisons (Erbia & Gadolinia) in two forms (BISO and QUADRISO particles) was also included. This study found that SMF requires about 12% enriched UN TRISO particles to match the cycle length of standard fuel when loaded in NHR200-II, which is about 7% for SMF with increased rod diameter. Feedback coefficients are less negative through the life of SMF than the reference. And it is estimated that the average center temperature of fuel kernel at fuel rod centerline is about 60 K below that of reference in this paper.

핵연료봉재의 프레팅 마멸 특성 (Fretting Wear Characteristics of Nuclear Fuel Rod Material)

  • 김태형;조광희;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.25-29
    • /
    • 1996
  • The fretting wear characteristics for Zircaloy-4 tube used as fuel rod in the nuclear power plant have been investigated. The fretting wear tester was designed and manufactured for this experiment. This study was focused on main factors of fretting wear, cycle, slip amplitude and normal load. The worn surfaces were observed by SEM.

  • PDF

A Power Control System for the Rod Drive Coil of Control Element Drive Mechanism in Pressurized Water Reactor

  • Hwang, Dong-Hwan;Seong, Se-Jin;Park, Gwang-Seok
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, we propose a new type of power control system for the rod drive coil of the CEDM of the PWR NPP in order to supply more reliable DC power The electrical modelling of the controlled rod drive coil was done by referring related documentations. The design of the proposed system is based on this electric81 model satisfying the existing specification. A high power DC-DC converter scheme is adopted utilizing the SMPS technique in the design of the proposed system. In order to show the effectiveness of the proposed system, an experimental system with the capability of 3.2 K Watt was set up for a rod with four cores and some computer simulations and experimentations were carried out. The result shows a very similar tracking performance with that of the existing system to the driving command. As a result of this, the proposed method can be applied to the power control system for the rod drive coil of the CEDM of the PWR NPP.

  • PDF

Numerical Analysis of the Turbulent Flow and Heat Transfer in a Heated Rod Bundle

  • In Wang-Kee;Shin Chang-Hwan;Oh Dong-Seok;Chun Tae-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.153-164
    • /
    • 2004
  • A computational fluid dynamics (CFD) analysis has been performed to investigate the turbulent flow and heat transfer in a triangular rod bundle with pitch-to-diameter ratios (P/D) of 1.06 and 1.12. Anisotropic turbulence models predicted the turbulence-driven secondary flow in a triangular subchannel and the distributions of the time mean velocity and temperature, showing a significantly improved agreement with the measurements from the linear standard $k-{\epsilon}$ model. The anisotropic turbulence models predicted the turbulence structure for a rod bundle with a large P/D fairly well, but could not predict the very high turbulent intensity of the azimuthal velocity observed in the narrow flow region (gap) for a rod bundle with a small P/D.

Analysis of cladding failure in a BWR fuel rod using a SLICE-DO model of the FALCON code

  • Khvostov, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2887-2900
    • /
    • 2020
  • Cladding failure in a fuel rod during operation in a BWR is analyzed using a FALCON code-based model. Comparative calculation with a neighbouring, intact rod is presented, as well. A considerable 'hot spot' effect in cladding temperature is predicted with the SLICE-DO model due to a thermal barrier caused by the localized crud deposition. Particularly significant overheating is expected to occur on the affected side of the cladding of the failed rod, in agreement with signs of significant localized crud deposition as revealed by Post Irradiation Examination. Different possibilities (criteria) are checked, and Pellet-Cladding Mechanical Interaction (PCMI) is shown to be one of the plausible potential threats. It is shown that PCMI could lead to discernible concentrated inelastic deformation in the overheated part of the cladding. None of the specific mechanisms considered can be experimentally or analytically identified as an only cause of the rod failure. However, according to the current calculation, a possibility of cladding failure by PCMI cannot be excluded if the crud thickness exceeded 300 ㎛.

DEVELOPMENT OF AN LES METHODOLOGY FOR COMPLEX GEOMETRIES

  • Merzari, Elia;Ninokata, Hisashi
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.893-906
    • /
    • 2009
  • The present work presents the development of a Large Eddy Simulation (LES) methodology viable for complex geometries and suitable for the simulation of rod-bundles. The use of LES and Direct Numerical Simulation (DNS) allows for a deeper analysis of the flow field and the use of stochastical tools in order to obtain additional insight into rod-bundle hydrodynamics. Moreover, traditional steady-state CFD simulations fail to accurately predict distributions of velocity and temperature in rod-bundles when the pitch (P) to diameter (D) ratio P/D is smaller than 1.1 for triangular lattices of cylindrical pins. This deficiency is considered to be due to the failure to predict large-scale coherent structures in the region of the gap. The main features of the code include multi-block capability and the use of the fractional step algorithm. As a Sub-Grid-Scale (SGS) model, a Dynamic Smagorinsky model has been used. The code has been tested on plane channel flow and the flow in annular ducts. The results are in excellent agreement with experiments and previous calculations.

The SPIZWURZ project - Experimental investigations and modeling of the behavior of hydrogen in zirconium alloys under long-term dry storage conditions

  • Mirco Grosse;Felix Boldt;Michel Herm;Conrado Roessger;Juri Stuckert;Sarah Weick;Daniel Nahm
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.824-831
    • /
    • 2024
  • In order to investigate the occurring processes during long-term dry storage of spent fuel assemblies, a joined project called SPIZWURZ, between the Karlsruhe Institute of Technology and the Gesellschaft für Anlagen-und Reaktorsicherheit (GRS), was started. Aim of the SPIZWURZ project is the determination and quantification of the influence of texture and elastic strain on diffusion and solubility of hydrogen in three different zirconium alloys used in western Europe during a long-term cooling transient (1 K/d) starting at 400 ℃. The strain in the cladding of an irradiated spent fuel rod shall be measured. Models predicting the formation of radial oriented hydrides will be validated, improved, and implemented in the GRS fuel rod performance code TESPA-ROD. This paper describes the SPIZWURZ project and already obtained first results.