• 제목/요약/키워드: Nuclear reactor coolant

검색결과 555건 처리시간 0.029초

수윤활 볼베어링의 리테이너 설계 특성 (Design Characteristics for Water Lubricated Ball Bearing Retainer)

  • 이재선;최순;김지호;박근배;지성균
    • Tribology and Lubricants
    • /
    • 제21권6호
    • /
    • pp.278-282
    • /
    • 2005
  • Deep groove ball bearing is installed in a control element of an integral nuclear reactor, where water is used as coolant and lubricant. This bearing is made of STS440C stainless steel for the raceways and the balls to use in radioactive environment and water. It is known that the retainer design affects ball bearing operability and endurance life, however there is no verified retainer design and material for water lubricated ball bearing. Four kinds of retainers are manufactured for the endurance test of water lubricated deep groove ball bearing. Three of them are commercially developed types and the other is designed for this research. It is verified that ball bearings with steel pressed and general plastic retainer can not survive to required life in the water, however bearings with machined type and cylinder type retainer can survive. This proves that one of the major design parameters for water lubricated ball bearing is retainer type and material. In this paper, experimental research of endurance test for water-lubricated ball bearing are reported.

수조내 증기제트 응축현상 제고찰 (Review of Steam Jet Condensation in a Water Pool)

  • 김연식;송철화;박춘경
    • 에너지공학
    • /
    • 제12권2호
    • /
    • pp.74-83
    • /
    • 2003
  • APR1400과 같은 차세대 원자력발전소에서는 원자로 안전성을 증진시키기 위하여 SDVS와 같은 계통을 도입하고 있다. 완전급수상실사고와 같은 경우는 POSRV가 개방되어 수조내 Sparger를 통하여 증기가 방출·응축되게 된다 증기가 응축함에 있어서 설계에서 고려해야 될 사항은 하중과 수조 혼합이며 증기제트 응축의 물리적 현상 이해를 통하여 적절한 대처를 마련할 수 있다. 수조내 Sparger를 통하여 분사되는 증기 응축에 대하여 하중과 수조 혼합 검토에 도움이 될 수 있도록 증기제트 응축의 물리적 현상 이해에 대한 검토와 평가를 수행하였다.

피복관 프레팅마모 해석을 위한 LuGre 마찰모델 성능 고찰 (Vibration Simulation Using LuGre Friction Model for Cladding Tube Fretting Wear Analysis)

  • 박남규;김진선;김중진;김재익
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.55-62
    • /
    • 2016
  • Nuclear fuels are always exposed to hot temperature and high speed coolant flow during the reactor operation. Thus the fuel rod accompanies small amplitude vibration due to the turbulent flow. The random vibration causes friction between the fuel rod and the grid structure which provides the lateral supports. The friction is critical to the fuel rod fretting wear, and it degrades fuel performance when a severe wear is developed. LuGre friction model is introduced in the paper, and the performance was evaluated comparing to the classical Coulomb model. It is shown that the developed friction force considering the Coulomb friction is not enough to stop or delay the motion while the stick-slip can be simulated using LuGre friction model. Numerical solutions of the two dimensional spacer grid cell model with the modern friction are also reviewed, and it is discussed that the new friction model simulates well the nonlinear mechanism.

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

고온 고압에서 물로 윤활되는 실리콘그라파이트 재질의 마찰 특성에 관한 연구 (Frictional Characteristics of Silicon Graphite Lubricated with Water at High Pressure and High Temperature)

  • 이재선;김은현;박진석;김종인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.151-156
    • /
    • 2001
  • Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss ana wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics.

  • PDF

재질 열화와 프레팅 피로거동 평가에 관한 연구 (A Study on Material Degradation and Fretting Fatigue Behavior)

  • 권재도;최성종;성상석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.157-162
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range ken $290^{\circ}C{\sim}390^{\circ}C$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 1800hr at $430^{\circ}C$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

  • PDF

원자로 냉각계통의 POSRV 유동에 관한 연구 (A Study on the Flow of POSRV in Reactor Coolant System)

  • 권순범;김인구;안형준;이동원;백승철;김경호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.568-573
    • /
    • 2003
  • When a safety valve equipped in a nuclear power plant opens in an instant by an accident, a moving shock wave propagates downstream the valve, inducing a complicated unsteady flow field. The moving shock wave may exert severe load to the structure. So, to reduce the load acting on the wall of POSRV, a gradual opening of POSRV is adopted in general. In theses connections, a numerical work is performed to investigate the effect of valve opening time on the unsteady flow fields downstream of the valve. Compressible, two-dimensional Navier-Stokes equations are used with the finite volume method. The obtained results show that sharp pressure rise through moving shock tor the case of instant opening is attenuated by employing the gradual opening of valve. It is turned that the flows for the two cases of gradual valve opening time show the similar to that of highly under-expanded one in jet structure having expansion and compression waves and Mach stem. Also, comparing with the results for the two cases of opening time, the shorter the valve opening is, the pressure gradient at the downstream of the valve becomes softly.

  • PDF

CANDU형 원전 주요기기의 피로손상 평가를 위한 그린함수 개발 (Development of Green's Functions for Fatigue Damage Evaluation of CANDU Reactor Coolant System Components)

  • 김세창;성희동;최재붕;김홍기;송명호;노승환
    • 한국압력기기공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.38-43
    • /
    • 2011
  • For the efficient and safe operation of nuclear power plant, evaluating quantitatively aging phenomenon of major components is necessary. Especially, typical aging parameters such as stresses and cumulative usage factors should be determined accurately to manage the lifetime of the plant facility. The 3-D finite element(FE) model is generated to calculate the aging parameters. Mechanical and thermal transfer functions called Green's functions are developed for the FE model with standard step input. The stress results estimated from transfer functions are verified by comparing with 3-D FE analyses results. Lastly, we suggest an effective fatigue evaluation methodology by using the transfer functions. The usefulness of the proposed fatigue evaluation methodology can be maximized by combining it with an on-line monitoring system.

A Study on the Crystalline Boron Analysis in CRUD in Spent Fuel Cladding Using EPMA X-ray Images

  • Jung, Yang Hong;Baik, Seung-Je;Jin, Young-Gwan
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Chalk River Unidentified Deposits (CRUDs) were collected from the Korean pressurized water reactor (PWR) plant (A, B, and C) where the axial offset anomaly (AOA) occurred. AOA, also known as a CRUD-induced power shift, is one of the key issues in maintaining stable PWR plant operations. CRUDs were sampled from spent nuclear fuel rods and analyzed using an electron probe micro-analyzer (EPMA). This paper describes the characteristics of boron-deposits from the CRUDs sampled from twice-burnt assemblies from the Korean PWR. The primary coolant of a PWR contains boron and lithium. It is known that boron deposition occurs in a thick CRUD layer under substantial sub-cooled nucleate boiling (SNB). The results of this study are summarized as follows. Boron was not found at the locations where the existence was confirmed in simulated CRUDs, in other words, the cladding and CRUD boundaries. Nevertheless, we clearly observed the presence of boron and confirmed that boron existed as a lump in crystalline form. In addition, the study confirmed that CRUD existed in a crystal form with a unique size of about 10 ㎛.

Test Coil과 영구자석의 자기 특성 연구 (Study on Magnetic Property for Test Coil and Permanent Magnet)

  • 박윤범;김종욱;이재선
    • 한국자기학회지
    • /
    • 제26권5호
    • /
    • pp.154-158
    • /
    • 2016
  • 원자력발전소의 원자로에는 노심 반응 속도를 제어하기 위하여 제어봉구동장치가 사용된다. 한국원자력연구원의 SMART 원자로는 원자로 가동 중 제어봉집합체의 위치를 확인하기 위하여 제어봉구동장치에 영구자석과 리드스위치로 구성되는 위치지시기가 설치된다. 원자로 가동 온도는 최대 $350^{\circ}C$로 고려되어 설계되며, 영구자석은 원자로 내에 설치된다. 반면에 리드스위치와 전기회로는 원자로 외부에 설치된다. Test coil은 리드스위치의 품질 검증을 위한 장비로서, 코일과 철심으로 구성되어 있다. 본 연구는 리드스위치에 미치는 Test coil과 영구자석의 자기 특성을 비교하고자 수행되었으며, 유한요소 전자기 시뮬레이션을 활용하였다.