• Title/Summary/Keyword: Nuclear power plant disaster

Search Result 71, Processing Time 0.027 seconds

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Suggestions to Improve the Effectiveness of National Radiological Emergency Response System (국내 방사능재난대응체계 실효성 제고를 위한 제언)

  • Moon, Joo Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.195-206
    • /
    • 2020
  • Although the national radiological emergency response system has been improved by incorporating lessons from the Fukushima nuclear power plant accident and recent domestic natural disasters, it has not fully incorporated these lessons. In addition, it cannot deal with a variety of aftermath of the radiological disaster. Even for the same disaster, the national emergency response system should comply with multiple domestic laws in our country. Furthermore, there are a few discrepancies between the articles of the domestic laws that the national radiological emergency response system should address. Therefore, this study investigates the characteristics of radiological disasters, examines articles on the domestic laws related to the national radiological emergency response system, and analyses the Japanese government's responses to the Fukushima nuclear power plant accident. Based on the results of the review, suggestions for the improvement of the national radiological emergency response system in terms of response organization and framework have been proposed in this study.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

Measures to Secure the Habitability of Temporary Shelter for Shelter in Place in Nuclear Power Plant Accidents (원전 사고지역에서 실내대피를 위한 임시대피시설의 거주성 확보방안)

  • Jeongdong Kim;Chonghwa Eun
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.582-596
    • /
    • 2023
  • Purpose: This study aims to explore the ways to improve the security of temporary shelters in case of nuclear power plant accidents. Method: In this study, we mainly rely on the case studies on previous nuclear power plant accidents-Chernobyl, Fukushima, and Three Mile Island (TMI) cases. Result: The current radiation emergency response plans for nuclear power plant accidents center around the evacuation procedure. As a result, the concept of "shelter in place" has been understood as a means of assisting resident evacuation. However, based on the case studies, we find that encouraging shelter in place, rather than simply emphasizing evacuation, would help minimize unnecessary casualties, especially in case of the accidents rated greater than or equal to INES 5. To facilitate better shelter in place, we recommend utilize apartments as temporary shelters and suggest some possible improvements to ensure those apartments could be equipped with technologies for high radiation protection. Conclusion: To ensure better shelter in place, we recommend using apartments as temporary shelters, and we seek to supplement the function of apartments by using shielding, positive pressure, and sealing technologies.

From Hiroshima to Fukushima: Nuclear and Artist Response in Japan (히로시마에서 후쿠시마까지, 핵과 미술가의 대응)

  • Choi, Tae Man
    • The Journal of Art Theory & Practice
    • /
    • no.13
    • /
    • pp.35-71
    • /
    • 2012
  • The purpose of this essay is to examine the responses of artists on nuclear experiences through an analysis of the nuclear images represented in contemporary Japanese art. Japan has previously as twice experienced nuclear disaster in 20th century. The first atomic bombs were dropped in 1945 as well as the 5th Fukuryumaru, Japanese pelagic fishing boat, exposed by hydrogen bomb test operated by the US in 1954 nearby Bikini atoll. Due to Tsunami taken place by the great earthquake that caused the meltdown of Fukushima Nuclear Power Plant in March 2010, Japan is being experienced a nuclear disaster again. Despite practical experiences, comtemporary Japanese art has avoided the subject of nuclear disasters since the end of the Asia-Pacific War for a variety of reasons. Firstly, GHQ prohibited to record or depict the terrible effect of atomic bomb until 1946. Secondly, Japanese government has tried to sweep the affair under the carpet quite a while a fact of nuclear damage to their people. Because Japan has produced numerous war record paintings during the Second World War, in the aftermath of the defeated war, most of Japanese artists thought that dealing with politics, economics, and social subject was irrelevant to art as well as style of amateur in order to erase their melancholic memory on it. In addition, silence that was intended to inhibit victims of nuclear disasters from being provoked psychologically has continued the oblivion on nuclear disasters. For these reasons, to speak on nuclear bombs has been a kind of taboo in Japan. However, shortly after the atomic bomb dropped on Hiroshima, the artist couple Iri and Toshi Maruki visited to ruin site as a volunteer for Victim Relief. They portrayed the horrible scenes of the legacy of nuclear bomb since 1950 based on their observation. Under the condition of rapid economical growth in 1960s and 1970s, Japanese subculture such as comics, TV animations, plastic model, and games produced a variety of post apocalyptic images recalling the war between the USA and Japanese militarism, and battle simulation based on nuclear energy. While having grown up watching subculture emerged as Japan Neo-Pop in 1990s, New generation appreciate atomic images such as mushroom cloud which symbolizes atomic bomb of Hiroshima. Takashi Murakami and other Neo-Pop artists appropriate mushroom cloud image in their work. Murakami curated three exhibitions including and persists in superflat and infantilism as an evidence in order to analyze contemporary Japanese society. However, his concept, which is based on atomic bomb radiation exposure experience only claimed on damage and sacrifice, does not reflect Japan as the harmer. Japan has been constructing nuclear power plants since 1954 in the same year when the 5th Fukuryumaru has exposed until the meltdown of Fukushima Nuclear Plant although took place of nuclear radiation exposures of Three Mile and Chernobyl. Due to the exploding of Fukushima Nuclear Power Plant, Japan reconsiders the danger of nuclear disaster. In conclusion, the purpose of this paper may be found that the sense of victim which flowed in contemporary art is able to inquire into the response of artist on the subject of nuclear as well as the relationship between society, politics, culture, and modern history of Japan and international political situation.

  • PDF

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part II: Under-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part II: 환기부족화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.80-88
    • /
    • 2013
  • The validation of Fire Dynamics Simulator (FDS) was conducted for the under-ventilated fire in well-confined multi-compartments representative of nuclear power plant. Numerical results were compared with experimental data obtained by the OECD/NEA PRISME project. The effects of the numerical boundary conditions (B.C.) in ventilated system and the flame suppression model applied within FDS on the thermal and chemical environments inside the compartment were discussed in details. It was found that numerical B.C. on the vent flow resulting from over-pressure at ignition and under-pressure at extinction should be considered carefully in order to predict accurately the species concentrations rather than temperatures and heat fluxes inside the multi-compartment. The default information of suppression model applied within FDS resulted in artificial phenomena such as flame extinction and re-ignition, and thus the FDS results on the under-ventilated fire showed good agreement with the experimental results as the modified suppression criteria of the fuel used was adopted.

Application of FDS for the Hazard Analysis of Lubricating Oil Fires in the Air Compressor Room of Domestic Nuclear Power Plant (국내 원자력발전소의 공기 압축기실에서 윤활유 화재의 위험성 분석을 위한 FDS의 활용)

  • Han, Ho-Sik;Hwang, Cheol-Hong;Baik, Kyung Lok;Lee, Sangkyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • The standard procedure of fire modeling was reviewed to minimize the user dependence, based on the NUREG-1934 and 1824 reports. The hazard analysis of lubricating oil fires in the air compressor room of domestic nuclear power plant (NPP) was also performed using a representative fire model, FDS (Fire Dynamics Simulator). The area ($A_f$) and location of fire source were considered as major parameters for the realistic fire scenarios. As a result, the maximum probability to exceed the thermal damage criteria of IEEE-383 unqualified electrical cables was predicted as approximately 70% with $A_f=1m^2$. It was also found that for qualified electrical cables, the maximum probabilities of exceeding the criteria were 2% and 90% with $A_f=2$ and $4m^2$, respectively. It was concluded that all electrical cables should be replaced with IEEE-383 qualified cables and the dike to restrict as $A_f{\leq}2m^2$ should be installed at the same time, in order to assure the thermal stability of electrical cables for lubricating oil fires in the air compressor room of domestic NPP.

Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000 (OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석)

  • Song, Jun Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.