• 제목/요약/키워드: Nuclear power facility

검색결과 338건 처리시간 0.027초

Thinking multiculturality in the age of hybrid threats: Converging cyber and physical security in Akkuyu nuclear power plant

  • Bicakci, A. Salih;Evren, Ayhan Gucuyener
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2467-2474
    • /
    • 2022
  • Nuclear Power Plants (NPPs) are the most protected facilities among all critical infrastructures (CIs). In addition to physical security, cyber security becomes a significant concern for NPPs since swift digitalization and overreliance on computer-based systems in the facility operations transformed NPPs into targets for cyber/physical attacks. Despite technical competencies, humans are still the central component of a resilient NPP to develop an effective nuclear security culture. Turkey is one of the newcomers in the nuclear energy industry, and Turkish Akkuyu NPP has a unique model owned by an international consortium. Since Turkey has limited experience in nuclear energy industry, specific multinational and multicultural characteristics of Turkish Akkuyu NPP also requires further research in terms of the Facility's prospective nuclear security. Yet, the link between "national cultures" and "nuclear security" is underestimated in nuclear security studies. By relying on Hofstede's national culture framework, our research aims to address this gap and explore possible implications of cross-national cultural differences on nuclear security. To cope with security challenges in the age of hybrid threats, we propose a security management model which addresses the need for cyber-physical security integration to cultivate a robust nuclear security culture in a multicultural working environment.

원전구조물 고강도철근 모듈화를 위한 적용방법 연구 (Study of application method for the Rebar Modulation of High-Strength Reinforcing Bars to the Nuclear Power Plant Structures)

  • 임상준;이병수;방창준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.17-18
    • /
    • 2013
  • To minimize construction of nuclear facility, it is required to reduce reinforcing bar amount and solve reinforcing bar concentration and for this, it is necessary to develop appication design technology and modular of high strength reinforcing bar. Hence, KHNP reduces excessive reinforcing bar amount which can cause possibility of poor construction of concrete through design standard development and modular of nuclear facility structure using high strength reinforcing bar to raise economics and has its purpose to maintain high-level safety and durability as they are. This study is to introduce application method for the Rebar Modulation of High-Strength Reinforcing Bars to the Nuclear Power Plant Structures.

  • PDF

계통 안전성을 고려한 원자력발전의 부하추종 요건연구 (A Study on Requirement of Nuclear Power Plant Load Following Operation Condition Considering Power System Security)

  • 이현철;백영식;이근준
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1565-1570
    • /
    • 2012
  • Nuclear power generation is increasing domestic power supply ratio by lower CO2 emission and fuel prices. Currently, nuclear power generator has been operated with maximum power output. Therefore, nuclear power generator could be no effect to managing the reactive power reserve on power system. The reactive power reserve is calculated to the difference between maximum facility and operation generation capacity of the power system. This paper was proposed that load following of nuclear power is control by using 15-bus power system model. In the simulation result, power system is shown to safety state by operating load following of nuclear power generator. This method has be improved the supplied reliability through economic and efficient operation.

방사성폐기물 처분시설 주변의 방사선환경조사 (Radiological Environment Investigation of Radioactive Waste Disposal Facility)

  • 백정석;정의영;안상복;김완
    • 방사성폐기물학회지
    • /
    • 제6권4호
    • /
    • pp.387-398
    • /
    • 2008
  • 원자력이용시설 주변의 방사선환경조사는 교육과학기술부 고시 제2008-28호(원자력이용시설 주변의 방사선환경조사 및 방사선환경 영향평가에 관한 고시)에 따라 주변주민들이 받게 되는 방사선량이 연간 선량한도 이내로 충분히 적게 유지되고 있는지를 확인함으로써 주변주민의 건강과 안전을 확보하고 주변 환경의 오염을 사전에 예방하는 데 있다. 그런데 국내 최초의 방사성폐기물처분시설은 시설운영을 시작하기 전 최소 2년 동안의 기초 환경조사 자료를 취득하여 부지주변의 기준 준위를 설정해야 하므로 2007년부터 2009년 상반기 방사성폐기물처분시설의 시범운영 및 2010년 상반기 준공을 목표로 방사선과 방사능에 대한 관한 기초 환경조사 자료를 취득하고 있다. 따라서 방사성폐기물처분시설 주변의 방사선환경조사에 관한 추진내용을 분석하고 최근에 취득한 2008년도 전반기 방사선환경조사결과를 바탕으로 향후 조사계획서 개정방향과 방사성폐기물처분시설 주변의 방사선환경조사를 수행하기 위해 관련 내용을 고찰하였다.

  • PDF

Scaling analysis of the pressure suppression containment test facility for the small pressurized water reactor

  • Liu, Xinxing;Qi, Xiangjie;Zhang, Nan;Meng, Zhaoming;Sun, Zhongning
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.793-803
    • /
    • 2021
  • The small PWR has been paid more and more attention due to its diversity of application and flexibility in the site selection. However, the large core power density, the small containment space and the rapid accident progress characteristics make it difficult to control the containment pressure like the traditional PWR during the LOCA. The pressure suppression system has been used by the BWR since the early design, which is a suitable technique that can be applied to the small PWR. Since the configuration and operating conditions are different from the BWR, the pressure suppression system should be redesigned for the small PWR. Conducting the experiments on the scale down test facility is a good choice to reproduce the prototypical phenomena in the test facility, which is both economical and reasonable. A systematic scaling method referring to the H2TS method was proposed to determine the geometrical and thermohydraulic parameters of the pressure suppression containment response test facility for the small PWR conceptual design. The containment and the pressure suppression system related thermohydraulic phenomena were analyzed with top-down and bottom-up scaling methods. A set of the scaling criteria were obtained, through which the main parameters of the test facility can be determined.

Design of muon production target system for the RAON μSR facility in Korea

  • Jeong, Jae Young;Kim, Jae Chang;Kim, Yonghyun;Pak, Kihong;Kim, Kyungmin;Park, Junesic;Son, Jaebum;Kim, Yong Kyun;Lee, Wonjun;Lee, Ju Hahn
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2909-2917
    • /
    • 2021
  • Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

WOLSONG LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL CENTER: PROGRESS AND CHALLENGES

  • Park, Jin-Beak;Jung, Hae-Ryong;Lee, Eun-Young;Kim, Chang-Lak;Kim, Geon-Young;Kim, Kyung-Su;Koh, Yong-Kwon;Park, Kyung-Woo;Cheong, Jae-Hak;Jeong, Chan-Woo;Choi, Jong-Soo;Kim, Kyung-Deok
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.477-492
    • /
    • 2009
  • In this paper, we discuss the experiences during the preparation of the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Center. These experiences have importance as a first implementation for the national LILW disposal facility in the Republic of Korea. As for the progress, it relates to the area of selected disposal site, the disposal site characteristics, waste characteristics of the disposal facility, safety assessment, and licensing process. During these experiences, we also discuss the necessity for new organization and change for a radioactive waste management system. Further effort for the safe management of radioactive waste needs to be pursued.

원자력발전소 영구정지 시 소내전력공급계통 운영방안 (An Operating Strategy of In-house Power Supply Systems in the Permanent Shutdown Nuclear Power Plant)

  • 임희택;이광대;전당희;윤종현;주익덕
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.337-342
    • /
    • 2018
  • Spent fuel is moved from the reactor into the spent fuel pool when nuclear power plant permanently shutdown. The sole function of a permanently defueled facility is to store spent fuel in a quiescent state. The function of electric system and loads are reduced. It is necessary to establish an operating strategy of electric system in the permanent shutdown nuclear plant. This paper reviews required loads and design criteria considering transition to permanent shutdown. An operating strategy of onsite electric system is proposed considering decommissioning strategy and stage of defueled condition.