• 제목/요약/키워드: Nuclear phase down

검색결과 43건 처리시간 0.019초

핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진 (Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells)

  • 최원경;최영현
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1268-1276
    • /
    • 2018
  • Cytidine analog decitabine (DEC)은 핵산 합성의 억제제로서 골수이형성 증후군 및 급성 골수성 백혈병 치료제로 사용되고 있다. 산화질소 합성에서 번역 단계를 억제하는 것으로 알려진 ammonium pyrrolidine dithiocarbamate (PDTC)는 $NF-{\kappa}B$의 대표적인 억제제이다. 본 연구에서는 인체 위암 AGS 세포를 대상으로 DEC와 PDTC의 병용 처리에 따른 세포증식 억제 기전을 조사하였다. 본 연구의 결과에 따르면 PDTC에 의한 AGS 세포의 증식 억제 효과는 DEC에 의해 농도 의존적으로 유의하게 증가하였으며, 이는 G2/M기의 세포주기 정지 및 apoptosis 유도와 관련이 있었다. PDTC와 DEC의 병용 처리에 의한 세포 사멸의 유도는 DNA 손상 유도와 관련이 있음을 H2AX의 인산화 증가로 확인하였다. 아울러 PDTC와 DEC의 병용 처리는 미토콘드리아 막 전위의 파괴를 유도하고, 세포 내 활성산소종(ROS)의 생성과 Bax의 발현을 향상시키고, Bcl-2 발현을 감소시켰으며 미토콘드리아에서 세포질로의 cytochrome c 유출을 증가시켰다. 또한 PDTC과 DEC의 병용 처리는 외인성 및 내인성 apoptosis 개시 caspase에 해당하는 caspase-8과 caspase-9의 활성뿐만 아니라 caspase-3의 활성화와 PARP 단백질의 분해를 유도하였다. 결론적으로 본 연구의 결과는 PDTC와 DEC의 병용 처리가 DNA 손상을 유발하고, ROS 증가와 연계된 외인성 및 내인성 apoptosis 사멸 경로를 활성화시킴으로써 AGS 세포의 증식을 억제하였음을 의미한다.

국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가 (Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's)

  • 강덕원;양양희;박경록
    • 방사성폐기물학회지
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2009
  • 본 논문은 국내에서 가동되고 있는 3개 로형의 원자로 냉각재로부터 유기 및 무기 $^{14}C$의 특성을 평가하는데 초점을 맞추었다. 주목적은 국내 원전 부지에서 환경으로 방출되는 $^{14}C$에 대한 신뢰할 만 한 특성을 평가하는데 있다. $^{14}C$는 방사성핵종 인벤토리 중 가장 중요한 핵종중의 하나로서 처분장에서의 방출 시나리오에서 가장 중요한 선량 기여 핵종중의 하나이다. $^{14}C$는 반감기가 5,730 년인 순수 베타방출체로써 환경으로의 이동성이 높을 뿐 아니라 생물학적인 유용성이 높다. 최근의 연구결과에 의하면, 유기화합물 형태의 $^{14}C$는 환원환경 하에서 원자로 냉각재내에서 주종을 이루고 있는 것으로 밝혀졌으며 그 외의 유기화합물인 formaldehyde, formic acid 및 acetate도 함께 형성되는 것으로 알려졌다. 그러나 정지화학 처 리 기간인 산성 산화환경 하에서는 산화성 탄소형태로 바뀌면서 $^{14}CO_2$$H^{14}CO_3^-$형으로 바뀌어 지는 것으로 나타났다. 본 연구에서는 원자력발전소의 다양한 처리계통의 시료에 대해 유기 및 무기화학형의 $^{14}C$ 농도를 측정, 평가하였다 원자로 계통 내에서의 $^{14}C$ 인벤토리는 약 3.1 GBq/kg로 나타났으며 냉각재 계통 내에서는 주로 유기화학형 이 주종을 이루고 있었으며 무기화학형은 10% 이내인 것으로 나타났다 용액중의 $^{14}C$ 측정은 기상과 액상으로 분리하여 분석하였다. 정상 운전 중에는 유기화학형의 $^{14}C$가 주종을 이루고 있지만 발전소의 배기구를 통해 방출되는 $^{14}C$의 화학형은 온도, pH, 체적제어탱크의 방출 및 정지화학 처리에 따라 화학형이 달라지고 있는 것으로 나타났다.

  • PDF

수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발 (Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth)

  • 백승우;윤달성;김시형;심준보;안도희
    • 방사성폐기물학회지
    • /
    • 제8권1호
    • /
    • pp.9-17
    • /
    • 2010
  • 액체카드뮴음극(LCC, Liquid Cadmium Cathode)을 사용하여 우라늄과 TRU (TRans Uranium) 원소를 동시에 회수하는 전해제련공정에서 LCC 표면에서 성장하는 수지상(dendrite) 우라늄의 생성 및 성장을 억제하기 위한 LCC 구조는 개발은 전해제련공정의 핵심이다. 금속 수지상의 생성과 성장 현상을 관찰하기 위해 상온에서 실험이 가능하며 육안관찰이 가능한 Zn-Ga 계의 모의실험장치를 제작하였으며 갈륨 계면에서의 수지상 아연의 성장 현상과 기존의 교반기형과 파운더형 LCC 구조의 성능을 관찰하였다. 이러한 금속 수지상은 전해용액 내에서 그 기계적 강도가 약한 것으로 보여 여러 가지 음극 구조에 의해 쉽게 파쇄 되지만 액체금속으로 쉽게 가라앉지는 않았다. 모의 실험결과를 바탕으로, LCC 구조개발에 활용할 수 있는 실험실 규모의 액체음극 전해제련 실험 장치를 제작하였으며, 수지상 우라늄의 성장 억제를 위한 여러 가지 형태의 LCC 구조의 성능 시험을 수행하였다. 교반기형 LCC 구조의 실험결과 LCC 도가니 내벽에서 성장하는 수지상 우라늄을 효과적으로 파쇄하지 못하였으며, 일자형과 harrow형 LCC 구조의 성능은 유사하였다. 이에 따라 LCC 표면과 도가니 내벽에서 성장하는 수지상 우라늄을 LCC 도가니 바닥으로 침전시키기 위하여 mesh형 LCC 구조를 개발하였다. 이의 성능실험결과 수지상 우라늄의 성장 없이 약 5 wt%까지의 우라늄을 회수할 수 있었다. 실험 종료 후 LCC 바닥 침전물을 화학 분석한 결과 금속간화합물(UCd11)이 형성되었음을 확인할 수 있었다.