• Title/Summary/Keyword: Nuclear material detection

Search Result 102, Processing Time 0.025 seconds

Sipping Test Technology for Leak Detection of Fission Products from Spent Nuclear Fuel (사용후핵연료 핵분열생성물 누출탐상 Sipping 검사기술)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Young Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2020
  • When a damage occurs in the nuclear fuel burning in the reactor, fission products that should be in the nuclear fuel rod are released into the reactor coolant. In this case, sipping test, a series of non-destructive inspection methods, are used to find leakage in nuclear fuel assemblies during the power plant overhaul period. In addition, the sipping test is also used to check the integrity of the spent fuel for moving to an intermediate dry storage, which is carried out as the first step of nuclear decommissioning, . In this paper, the principle and characteristics of the sipping test are described. The structure of the sipping inspection equipment is largely divided into a suction device that collects fissile material emitted from a damaged assembly and an analysis device that analyzes their nuclides. In order to make good use of the sipping technology, the radioactive level behavior of the primary system coolant and major damage mechanisms in the event of nuclear fuel damage are also introduced. This will be a reference for selecting an appropriate sipping method when dismantling a nuclear power plant in the future.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Preliminary Analysis of a Sampling and Transportation System for Leak Detection during Steam Leak Accident of a Pipe in Nuclear Power Plants (원전 내 배관의 증기 누설 사고 시 누설 탐지 포집/이송 시스템 예비 해석)

  • Choi, Dae Kyung;Choi, Choengryul;Kwon, Tae-Soon;Euh, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2020
  • As leakage in nuclear power plants could cause a variety of problems, it is very critical to monitor leakage from the safety point of view. Accordingly, a new type of leak detection system is currently being developed and flow characteristics of the sampling and transportation system are investigated by using numerical analysis as a part of the development process in this study. The results showed that the steam mass fraction varied according to the effect of the gap between the insulation and piping component, transportation velocity, and material properties of porous media during the sampling and transportation process. The results of this study should be useful for understanding flow characteristics of the sampling and transportation system and its design and application.

ESTIMATION OF LEAK RATE THROUGH CIRCUMFERENTIAL CRACKS IN PIPES IN NUCLEAR POWER PLANTS

  • PARK, JAI HAK;CHO, YOUNG KI;KIM, SUN HYE;LEE, JIN HO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.332-339
    • /
    • 2015
  • The leak before break (LBB) concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry-Fauske flow model and modified Henry-Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

Source and LVis based coincidence summing correction in HPGe gamma-ray spectrometry

  • Lee, Jieun;Kim, HyoJin;Kye, Yong Uk;Lee, Dong Yeon;Kim, Jeung Kee;Jo, Wol Soon;Kang, Yeong-Rok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1754-1759
    • /
    • 2022
  • The activity of gamma-ray emitting nuclides is calculated assuming that each gamma-ray is detected individually; thus, the magnitude of the coincidence summing signal must be considered during activity calculations. Here, the correction factor for the coincidence summing effect was calculated, and the detection efficiencies of two HPGe detectors were compared. The CANBERRA Inc. GC4018 high-purity Ge detector provided an estimate for the peak-to-total ratio using a point source to determine the coincidence summing correction factor. The ORTEC Inc. GEM60 high-purity Ge detector uses EFFTRAN in LVis to obtain the parameters of the detector and source model and the gamma-gamma and gamma-X match estimates, in order to determine the coincidence summing correction factor. Nuclide analyses, radioactivity comparisons, and analyses of reference material samples were performed utilizing certified reference materials to accurately determine the detection efficiencies. For both Co-60 and Y-88, the detection efficiency for a point source increased by an average of at least 12-13%, whereas the detection efficiency determined using LVis increased by an average of at least 13-15%. The calculated radioactivity values of the certified reference material and reference material samples were accurate to within 3% and 6% of the measured values, respectively.

Development of Differential Type Eddy Current Probe for NDT Evaluation of the Steam Generator Tube (증기발생기 전열관의 비파괴 탐상용 차등형 와전류 탐촉자 개발)

  • Jung, S.Y.;Son, D.;Ryu, K.S.;Park, D.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.292-297
    • /
    • 2005
  • Steam generator of a nuclear power plant has important rolls for the heat transfer and the isolation of radioactive materials. So bursting of the steam generator tube is directly related to the accident of nuclear power plants. Incone1600 has been used for the steam generator tube material. The material shows non-magnetic and metallic properties, eddy current NDT method has been employed for defects detection. In this work, a differential type of eddy current probe was developed to improve resolution of defect detection. To verify properties of the developed differential type eddy current probe, we have made reference material with SUS304 which has similar magnetic and electrical properties of Inconel600. Using the developed differential type eddy current probe, we can detect defect size of 0.25 mm in diameter and 0.2 mm in depth (volume of $1{\times}10^{-3}\;mm^3$) with the reference material.

CHARACTERISTICS OF FABRICATED SiC RADIATION DETECTORS FOR FAST NEUTRON DETECTION

  • Lee, Cheol-Ho;Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Park, Hyeon-Seo;Kim, Gi-Dong;Park, June-Sic;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.70-74
    • /
    • 2012
  • Silicon carbide (SiC) is a promising material for neutron detection at harsh environments because of its capability to withstand strong radiation fields and high temperatures. Two PIN-type SiC semiconductor neutron detectors, which can be used for nuclear power plant (NPP) applications, such as in-core reactor neutron flux monitoring and measurement, were designed and fabricated. As a preliminary test, MCNPX simulations were performed to estimate reaction probabilities with respect to neutron energies. In the experiment, I-V curves were measured to confirm the diode characteristic of the detectors, and pulse height spectra were measured for neutron responses by using a $^{252}Cf$ neutron source at KRISS (Korea Research Institute of Standards and Science), and a Tandem accelerator at KIGAM (Korea Institute of Geoscience and Mineral Resources). The neutron counts of the detector were linearly increased as the incident neutron flux got larger.

Isotopic Fissile Assay of Spent Fuel in a Lead Slowing-Down Spectrometer System

  • Lee, Yongdeok;Jeon, Juyoung;Park, Changje
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.549-555
    • /
    • 2017
  • A lead slowing-down spectrometer (LSDS) system is under development to analyze isotopic fissile content that is applicable to spent fuel and recycled material. The source neutron mechanism for efficient and effective generation was also determined. The source neutron interacts with a lead medium and produces continuous neutron energy, and this energy generates dominant fission at each fissile, below the unresolved resonance region. From the relationship between the induced fissile fission and the fast fission neutron detection, a mathematical assay model for an isotopic fissile material was set up. The assay model can be expanded for all fissile materials. The correction factor for self-shielding was defined in the fuel assay area. The corrected fission signature provides well-defined fission properties with an increase in the fissile content. The assay procedure was also established. The assay energy range is very important to take into account the prominent fission structure of each fissile material. Fission detection occurred according to the change of the Pu239 weight percent (wt%), but the content of U235 and Pu241 was fixed at 1 wt%. The assay result was obtained with 2~3% uncertainty for Pu239, depending on the amount of Pu239 in the fuel. The results show that LSDS is a very powerful technique to assay the isotopic fissile content in spent fuel and recycled materials for the reuse of fissile materials. Additionally, a LSDS is applicable during the optimum design of spent fuel storage facilities and their management. The isotopic fissile content assay will increase the transparency and credibility of spent fuel storage.