• Title/Summary/Keyword: Nuclear factor-kappa B ($NF-{\kappa}B$)

Search Result 801, Processing Time 0.03 seconds

Antiinflammatory Effect of Lactic Acid Bacteria: Inhibition of Cyclooxygenase-2 by Suppressing Nuclear Factor-${\kappa}B$ in Raw264.7 Macrophage Cells

  • Lee, Jeong-Min;Hwang, Kwon-Tack;Jun, Woo-Jin;Park, Chang-Soo;Lee, Myung-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1683-1688
    • /
    • 2008
  • Lactobacillus casei 3260 (L. casei 3260) was evaluated in relation to the inflammatory response mediated by lipopolysaccharide (LPS)-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and cyclooxygenase-2 (COX-2) expression in Raw264.7 macrophage cells. The treatment of Raw264.7 cells with L. casei 3260 significantly inhibited the secretion of tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and prostaglandins $E_{2}\;(PGE_{2})$, followed by suppression of COX-2. To clarify the molecular mechanism, the inhibitory effect of L. casei 3260 on the NF-${\kappa}B$ signaling pathway was examined based on the luciferase reporter activity. Although the treatment of Raw264.7 cells with L. casei 3260 did not affect the transcriptional activity of NF-${\kappa}B$, it did inhibit NF-${\kappa}B$ activation, as determined by the cytosolic p65 release and degradation of I-${\kappa}B{\alpha}$. Therefore, these findings suggest that the suppression of COX-2 through inhibiting the NF-${\kappa}B$ activation by LPS may be associated with the antiinflammatory effects of L. casei 3260 on Raw264.7 cells.

Tumor Necrosis Factor-Alpha $(TNF-{\alpha})$ Induces PTEN Expression in HL-60 Cells (백혈병세포에서 종양괴사인자에 의한 PTEN 발현증가)

  • Lee Seung-Ho;Park Chul-Hong;Kim Byeong-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • Tumor necrosis factor-alpha $(TNF-{\alpha})$ plays a variety of biological functions such as apoptosis, inflammation and immunity. PTEN also has various cellular function including cell growth, proliferation, migration and differentiation. Thus, possible relationships between two molecules are suggested. $(TNF-{\alpha})$has been known to downregulate PTEN via nuclear factor-kappa $B(NF-{\kappa}B)$ pathway in the human colon cell line, HT-29. However, here we show the opposite finding that $(TNF-{\alpha})$ upregulates PTEN via activation of $NF-{\kappa}B$ in HL-60 cells. $TNF-{\alpha}$ increased PTEN expression at HL-60 cells in a time- and dose-dependent manner, but the response was abolished by disruption of $NF-{\kappa}B$ with p65 anisense oligonucleotide or pyrrolidine dithiocarbamate (PDTC). We found that $TNF-{\alpha}$ activated the $NF-{\kappa}B$ pathways, evidenced by the translocation of p65 to the nucleus in $TNF-{\alpha}-treated$ cells. We conclude that $TNF-{\alpha}$ induces upregulation of PTEN expression through $NF-{\kappa}B$ activation in HL-60 cells.

Herbal Extracts as a NF-kappaB Inhibitor (NF-kappaB 프로모터 활성을 억제하는 식물추출물)

  • Park, Deok-Hoon;Lee, Jong-Sung;Jung, Eun-Sun;Hyun, Chang-Gu;Lee, Ji-Young;Hur, Sung-Ran;Koh, Jae-Sook;Lee, Hee-Kyung;Baek, Ji-Hwoon;Yoo, Byung-Sam;Moon, Ji-Young;Kim, Ju-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.135-140
    • /
    • 2006
  • Nuclear factor-kappaB (NF-kappaB) is a critical transcription factor for maximal expression of many of the cytokines that are involved in the pathogenesis of inflammatory diseases. In this study, we found that 12 plant extracts among 200 plants, namely, Forsythia koreana, Capsicum annuum L, Mentha arvenis, Duchesnea chrysantha, Morus alba, Saururus Chinenis (Lour) Baill, Pine needle, Zingiber mioga (Thunb.), Roscoe, Houttuynia, Prunus yedoenis, Sasa quelpaertenis, significantly inhibited LPS- induced NF-kappaB activation in a concentration-dependent manner. Additionally, 12 plant extracts were found to have antioxidant activities in DPPH assay Therefore, we have attempted to determine whether 12 herbal extracts could inhibit the expression of cytokines possessing NF-kappaB promoter in their promoter regions. Consistently 12 herbal extracts inhibited LPS-induced production of TNF alpha and interleukin-8 (IL-8). These results show that 12 herbal extracts suppresses the production of pro-inflammatory mediators through the inhibition of the NF-kappaB signaling pathway, we suggest that 12 herbal extracts can be used as a anti-inflammatory and soothing agent.

Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB

  • Prasad, Rajapaksha Gedara;Choi, Yung Hyun;Kim, Gi-Young
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\kappa}B$ (TNF-${\alpha}$) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-${\alpha}$ in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-${\alpha}$, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, $PGE_2$, and TNF-${\alpha}$ in LPS-treated BV2 microglial cells by suppressing ROS and NF-${\kappa}B$. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-${\kappa}B$ signaling pathway.

Inhibitory Effect of Rosa laevigata on Nitric Oxide Synthesis and $NF-{\kappa}B$ Activity in lipopolysaccharide-stimulated Macrophages (lipopolysaccharide로 자극된 대식세포에서 금앵자의 Nitric Oxide 생성 및 $NF-{\kappa}B$ 활성 억제 효과)

  • Ha, Hyun-Hee;Park, Sun-Young;Ko, Woo-Shin;Jang, Jeong-Su;Kim, Young-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.385-389
    • /
    • 2008
  • Nitric oxide (NO) has been suggested to play an important role in endotoxin-mediated shock and inflammation. In this study, we investigated the effect of Rosa laevigata Michx. (Rosaceae) on the production of NO and the molecular mechanism of its action. Rosa laevigata inhibited NO generation and iNOS expression in LPS-stimulated murine macrophages. Activity of nuclear $factor{-\kappa}B\;(NF{-\kappa}B)$ and the degradation of $I{\kappa}B-{\alpha}$ were suppressed by Rosa laevigata. Furthermore, extracellular signal-stimulated kinase (ERK), which is known to be involved in $NF{-\kappa}B$ activation, is inhibited by Rosa laevigata. These results suggest that Rosa laevigata could exert its anti-inflammatory actions by suppressing the synthesis of NO through inhibition of $NF{-\kappa}B$ activity.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Effect of trans-10, cis-12 Conjugated Linoleic Acid on Calcium-Dependent Reactive Oxygen Species and Nitric Oxide Production and Nuclear Factor-${\kappa}B$ Activation in Lipopolysaccharide-Stimulated RAW 264.7 Cells (LPS 자극 RAW 264.7 세포에 있어서 칼슘의존성 ROS와 NO 생산 및 NF-${\kappa}B$ 활성에 대한 CLA의 억제효과)

  • Choi, Tae-Won;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) has been shown to participate in the regulation of anti-inflammatory effects. The objectives of this study were to examine the effects of t10c12-CLA on reactive oxygen species (ROS) and nitric oxide (NO) production and nuclear factor-kappaB (NF-${\kappa}B$) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and to determine whether these effects were associated with change of intracellular calcium ion ($Ca^{2+}$). ROS production was increased in LPS-stimulated RAW 264.7 cells, and this effect was suppressed by 1,2-bis-(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM), a calcium chelator. t10c12-CLA suppressed ROS production in LPS-stimulated RAW 264.7 cells, which was further more decreased by treatment with BAPTA/AM. These indicated that t10c12-CLA decreases $Ca^{2+}$-dependent ROS production in LPS-stimulated RAW 264.7 cells. Similarly, NF-${\kappa}B$ p65 DNA binding activity and NO production were decreased by treatment with either t10c12-CLA, BAPTA/AM, or t10c12-CLA and BAPTA/AM combination. However, there were no differences between t10c12-CLA and BAPTA/AM treatment in NO production of LPS-stimulated RAW 264.7 cells. These data indicate that t10c12-CLA inhibits the increases in ROS and NO production and the NF-${\kappa}B$ activation in LPS-stimulated condition. These results suggested that CLA exerts potent anti-inflammatory effects by suppression of LPS-induced ROS and NO production, and NF-${\kappa}B$ activationn via $Ca^{2+}$-dependent pathway.

The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells (Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과)

  • Kim, Sang-Bo;Seong, Yeong-Ae;Jang, Hee-Jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1689-1697
    • /
    • 2011
  • In this study, we investigated the anti-inflammation effect of Persicaria thunbergii (P. thunbergii) on RAW 264.7 murine macrophage cells. The anti-inflammatory activity of P. thunbergii was determined by measuring expression of the LPS-induced inflammatory proteins, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). Methanol extract of P. thunbergii decreased the expression of iNOS, COX-2 and NF-${\kappa}B$, and increased the expression of HO-1 in LPS-stimulated RAW264.7 cells. Methanol extract was fractioned by n-butanol, hexane and ethyl acetate (EtOAc) and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, the EtOAc soluble fraction was investigated by the expression of prostaglandin $E_2$ ($PGE_2$), and showed decreasing form to the dose-dependent manner. EtOAc extract showed the most effective inhibitory activity of the expression of iNOS, COX-2 and NF-${\kappa}B$, and the production of NO. The study showed that P. thunbergii has anti-inflammatory activity through the decrease of NO and inhibition of iNOS, COX-2, $PGE_2$ and NF-${\kappa}B$ expression, and by the increase of HO-1 enzyme. This study needs for more investigation to find out the most effective single compound with anti-inflammatory activity.

Characterization of anti-inflammatory effect of soybean septapeptide and its molecular mechanism (대두 septapeptide의 항염 효과 및 분자 기작 규명)

  • Lewis, Kevin M.;Sattler, Steven A.;Kang, ChulHee;Wu, Hong Min;Kim, Sang Geon;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.208-213
    • /
    • 2018
  • Activation of nuclear factor kappa B ($NF{\kappa}B$) leads to the inflammatory process. During this $NF{\kappa}B$-dependent inflammation process, inducible nitric oxide synthase (iNOS) are expressed in the inflammatory cells. Our previous data indicated that a specific septapeptide (GVAWWMY) from the soybean extract fermented by Bacillus licheniformis B1 inhibited iNOS mRNA expression and NO production in cultured macrophage cells. Our further experiments revealed that treatment of same septapeptide resulted in inhibition of LPS-induced $NF{\kappa}B$ activation by reversing degradation of $I{\kappa}B{\alpha}$, an inhibitory protein for $NF{\kappa}B$. The molecular docking indicated that the septapeptide binds to $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and thus it can inhibit phosphorylation of $I{\kappa}B{\alpha}$. Supporting this, the binding site for the septapeptide has the highest affinity (-8.7 kcal/mol) and the site was located at the kinase domain (KD) of $IKK{\beta}$, which can significantly affect the kinase activity of $IKK{\beta}$.

Effects of Sulraphane on Osteoclastogenesis in RAW 264.7 (RAW 264.7 세포에서 sulforaphane의 파골세포형성 저해효과)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Inflammatory cytokines play a major role in osteoclastogenesis, leading to the bone resorption that is frequently associated with osteoporosis. Sulforaphane, isolated from the Broccoli(Brassica oleracea var. italia) florets, inhibits the production of inflamatory cytokine. In the present study, we determined inhibitory effect of sulforaphane on Receptor activator of nuclear factor κB ligand(RANKL)-induced osteoclast formation. Sulforaphane inhibited the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase(TRAP), cathepsin K, matrix metalloproteinase 9(MMP-9), and calcitonin receptor in RANKL-induced RAW 264.7 macrophage. Also, sluforaphane inhibited the expression of osteoclast protein, such as TRAP, MMP-9, tumor necrosis factor receptor-associated factor 6(TRAF6) and transcription factor nuclease factor of activated T cells(NFAT)c1. Sulforaphane inhibited RANKL-induced activiation of nuclear factor kappaB(NF-kappaB) by suppression RANKL-mediated NF-kappaB transcriptional acitivation. We are confirmed that sulforaphane inhibits not only transcriptional activity of NF-kappaB but also expressions of the osteoclastogenesis factors(TRAP, cathepsin K, MMP-9, calcitonin, TRAF6) and trranscription factor NFATc1.