• 제목/요약/키워드: Nuclear factor-kappa

검색결과 1,018건 처리시간 0.022초

Ethanol extract of Callophyllis japonica enhances nitric oxide and tumor necrosis factor-alpha production in mouse macrophage cell line, RAW 264.7 cells

  • Ahn, Mee-Jung;Park, Dal-Soo;Yang, Won-Hyung;Go, Gyung-Min;Kim, Hyung-Min;Hyun, Jin-Won;Park, Jae-Woo;Shin, Taek-Yun
    • Advances in Traditional Medicine
    • /
    • 제7권4호
    • /
    • pp.341-347
    • /
    • 2007
  • Red seaweed (Callophyllis japonica) has long formed part of the diet of Asians, but the pharmacological properties of this plant have not been evaluated. In this study, we examined the effect of an ethanol extract of C. japonica on the generation of nitric oxide (NO) in RAW 264.7 cells. The C. japonica extract increased the generation of NO and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), which were detected by the Griess method and an enzyme-linked immunosorbent assay, respectively. The increased production of NO by C. japonica extract was inhibited by $N^G$-monomethyl-L-arginine ($100{\mu}M$), a specific inhibitor of NO production in the L-arginine-dependent pathway, and by the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) inhibitor, pyrrolidine dithiocarbamate ($10-100{\mu}M$) in a dose-dependent manner. These findings demonstrate that C. japonica extract stimulates the production of NO and $TNF-{\alpha}$ in RAW 264.7 cells through the activation of $NF-{\kappa}B$ and that this extract might also inhibit the growth of the human leukemic cells.

Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats

  • Dun, Yaoyan;Liu, Min;Chen, Jing;Peng, Danli;Zhao, Haixia;Zhou, Zhiyong;Wang, Ting;Liu, Chaoqi;Guo, Yuhui;Zhang, Changcheng;Yuan, Ding
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.50-56
    • /
    • 2018
  • Background: Saponins from Panax japonicus (SPJ) are the most abundant and main active components of P. japonicus, which replaces ginseng roots in treatment for many kinds of diseases in the minority ethnic group in China. Our previous studies have demonstrated that SPJ has the effects of anti-inflammation through the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-${\kappa}B$) signaling pathways. The present study was designed to investigate whether SPJ can modulate intestinal tight junction barrier in aging rats and further to explore the potential mechanism. Methods: Aging rats had been treated with different doses (10 mg/kg, 30 mg/kg, and 60 mg/kg) of SPJ for 6 mo since they were 18 mo old. After the rats were euthanized, the colonic samples were harvested. Levels of tight junctions (claudin-1 and occludin) were determined by immunohistochemical staining. Levels of proinflammatory cytokines (interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$) were examined by Western blot. NF-${\kappa}B$ and phosphorylation of MAPK signaling pathways were also determined by Western blot. Results: We found that SPJ increased the expression of the tight junction proteins claudin-1 and occludin in the colon of aging rats. Treatment with SPJ decreased the levels of interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$, reduced the phosphorylation of three MAPK isoforms, and inhibited the expression of NF-${\kappa}B$ in the colon of aging rats. Conclusion: The studies demonstrated that SPJ modulates the damage of intestinal epithelial tight junction in aging rats, inhibits inflammation, and downregulates the phosphorylation of the MAPK and $NF-{\kappa}B$ signaling pathways.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Effects of Oenanthe javanica on Transcriptional Regulation of COX-2 by Inhibiting Translocation of p65 Subunit in LPS-Stimulated Murine Peritoneal Macrophages

  • Lee, Jeong-Min;Kim, Hyun-Ji;Choi, Hee-Jung;You, Yang-Hee;Hwang, Kwon-Tack;Lee, Myung-Yul;Park, Chang-Soo;Jun, Woo-Jin
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.975-979
    • /
    • 2006
  • The extracts of Oenanthe javanica were evaluated for their effects on the expression of cyclooxygenase-2 (COX-2), which is mediated by the translocation of the p65 subunit into the nucleus. Fractions of ethyl acetate and chloroform from 80% ethanol extracts of O. javanica exhibited inhibitory effects on the secretion of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) from lipopolysaccharide (LPS)-stimulated peritoneal macrophages; however, the aqueous- and hexane-fractions showed no significant effect. The ethyl acetate- and chloroform-fractions also reduced the COX-2 enzyme levels after 24-hr treatment. RT-PCR showed that the mRNA levels of COX-2 decreased following treatment with these fractions, suggesting that COX-2 expression is transcriptionally regulated by these extracts. We examined the effects of the chloroform- and ethyl acetate-fractions on the cytosolic activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$, p65 subunit) and on the degradation of inhibitor-${\kappa}B{\alpha}$ ($I-{\kappa}B{\alpha}$) in order to determine the mechanism of COX-2 regulation. The LPS-stimulated activation of the p65 subunit was significantly blocked upon the addition of $50\;{\mu}g/mL$ of these fractions, and the cytosolic $I-{\kappa}B{\alpha}$ degradation process was simultaneously inhibited. These findings suggest that the inhibition of COX-2 expression by the ethyl acetate-and chloroform-fractions may result from the inhibition of p65 translocation by blocking the degradation of $I-{\kappa}B{\alpha}$; this may be the mechanistic basis for the anti-inflammatory effects of O. javanica.

Diethyldithiocarbamate Suppresses an NF-κB Dependent Metastatic Pathway in Cholangiocarcinoma Cells

  • Srikoon, Pattaravadee;Kariya, Ryusho;Kudo, Eriko;Goto, Hiroki;Vaeteewoottacharn, Kulthida;Taura, Manabu;Wongkham, Sopit;Okada, Seiji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4441-4446
    • /
    • 2013
  • Cholangiocarcinoma (CCA) is a tumor of biliary ducts, which has a high mortality rate and dismal prognosis. Constitutively activation of the transcription factor nuclear factor kappa-B (NF-${\kappa}B$) has been previously demonstrated in CCA. It is therefore a potential target for CCA treatment. Effects of diethyldithiocarbamate (DDTC) on NF-${\kappa}B$-dependent apoptosis induction in cancer have been reported; however, anti-metastasis has never been addressed. Therefore, here the focus was on DDTC effects on CCA migration and adhesiond. Anti-proliferation, anti-migration and anti-adhesion activities were determined in CCA cell lines, along with p65 protein levels and function. NF-${\kappa}B$ target gene expression was determined by quantitative RT-PCR. DDTC inhibited CCA cell proliferation. Suppression of migration and adhesion were observed prior to anti-CCA proliferation. These effects were related to decreased p65, reduction in NF-${\kappa}B$ DNA binding, and impaired activity. Moreover, suppression of ICAM-1 expression supported NF-${\kappa}B$-dependent anti-metastatic effects of DDTC. Taken together, DDTC suppression of CCA migration and adhesion through inhibition of NF-${\kappa}B$ signaling pathway is suggested from the current study. This might be a promising treatment choice against CCA metastasis.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Fucosyltransferase IV Enhances Expression of MMP-12 Stimulated by EGF via the ERK1/2, p38 and NF-kB Pathways in A431Cells

  • Yang, Xue-Song;Liu, Shui-Ai;Liu, Ji-Wei;Yan, Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1657-1662
    • /
    • 2012
  • Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4-induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor kB (NF-${\kappa}B$) and resulted in phosphorylation of $IkB{\alpha}$ in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-${\kappa}B$ translocation and phosphorylation of $I{\kappa}B{\alpha}$ when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/degradation of $I{\kappa}B{\alpha}$, NF-${\kappa}B$ activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-${\kappa}B$-dependent mechanism.

Heme Oxygenase-1 as a Potential Therapeutic Target for Hepatoprotection

  • Farombi, Ebenezer Olatunde;Surh, Young-Joon
    • BMB Reports
    • /
    • 제39권5호
    • /
    • pp.479-491
    • /
    • 2006
  • Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-${\kappa}B$) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.

The anti-oxidative and anti-inflammatory effect of Psoralea corylifolia on Ulcerative Colitis Induced by Dextran Sulfate Sodium in Mice

  • Ahn, Sang Hyun;Kim, Ki Bong
    • 대한한의학회지
    • /
    • 제37권4호
    • /
    • pp.10-21
    • /
    • 2016
  • Objectives: This study was to investigate the anti-oxidative and anti-inflammatory effect of Psoralea corylifolia water extract (PE) on ulcerative colitis which was induced by dextran sulfate sodium (DSS) in mice. Methods: Ulcerative colitis was induced by DSS in male BALB/c mice. The mice were divided into 3 groups. The control group (Ctrl) was not induced ulcerative colitis. The pathological group (CE) was induced the colitis. The experimental group (PT) was administered PE after inducing the colitis. The effects of the PE on ulcerative colitis were evaluated by morphological change in the colon tissue and cells, substance P production, activity of tumor necrosis factor $(TNF)-{\alpha}$ and nuclear factor $(NF)-{\kappa}B$, cyclooxygenase (COX)-2 production, and anti-oxidative activity. Results: In the PT group, PE alleviated hemorrhagic erosion in colon mucosa and infiltration of inflammatory cells in lamina propria mucosae. In the colon of the PT group, COX-2 production was inhibited via regulating the activity of $TNF-{\alpha}$ and $NF-{\kappa}B$ p65. PE also had an anti-oxidative effect via activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Conclusions: In this study, we found the utility of treatment with PE and the potential of developing a medicine for ulcerative colitis by applying our results. Further investigations for the anti-inflammatory mechanism of PE may be needed.