• Title/Summary/Keyword: Nuclear factor kappa B.

Search Result 1,019, Processing Time 0.035 seconds

Gastroprotective Effect of Artemisia frigida Willd in HCl/Ethanol-induced Acute Gastritis (HCl/에탄올로 유발된 급성 위염에서 Artemisia frigida Willd의 위장 보호 효과)

  • Oh, Min Hyuck;Lee, Se Hui;Park, Hae-jin;Shin, Mi-rae;Sharav, Bold;Roh, Seong-soo
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.242-250
    • /
    • 2021
  • Artemisia frigida Willd (AW, Fringed sagewort), which is widespread in Mongolia, is a well-known medicinal plant as a member of the Compositae family. This study aims to explore the gastroprotective effect of water extract of AW on 150 mM HCl/60% ethanol-induced acute gastritis in 5 week old male ICR mice. Total polyphenols, total flavonoid contents, and anti-oxidant activity in vitro in AW were evaluated. First, the gross area of gastric mucosal damage was measured. Then western blot analysis was conducted to determine the possible mechanisms of action underlying the effects of AW. AW administration decreased gastric mucosal damage. Moreover, the group with AW treatment effectively inhibited nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression associated with oxidative stress. AW treatment enhanced an anti-oxidant effect through the increase of anti-oxidant proteins. Besides, the increased expressions of inflammatory cytokines induced by nuclear factor-kappa B (NF-κB) activation are alleviated through AW treatment. Taken together, AW exerted a gastroprotective effect against gastric mucosal damage. These results indicate that AW could have the potential used as a natural therapeutic drug for the treatment of acute gastritis.

The Treatment Effect of Ulcerative Colitis of Supercritical Heat-Treated Radish Extracts

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.145-155
    • /
    • 2021
  • With the recent rapid improvement in the standards of life and westernization of dietary lifestyles, the consumption of high-calorie diets such as high-fat and high-protein red meat and instant foods has increased, while less vegetables containing dietary fiber are consumed. In addition to that, stress, erroneous dietary behaviors, and contaminated environments are linked to the risk of developing ulcerative colitis, which is on the rise. Another cause of ulcerative colitis is that involve laxative abuse, including repeated, frequent use of laxatives, and include such conditions as deteriorated bowel function, irritable bowel syndrome, diarrhea, intestinal inflammation, etc. The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling molecules through suppression both mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of antioxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine.

Bulb of Lilium longiflorum Thunb Extract Fermented with Lactobacillus acidophilus Reduces Inflammation in a Chronic Obstructive Pulmonary Disease Model

  • Ji-Eun Eom;Gun-Dong Kim;Young In Kim;Kyung min Lim;Ju Hye Song;Yiseul Kim;Hyeon-Ji Song;Dong-Uk Shin;Eun Yeong Lim;Ha-Jung Kim;Sung Hoon Kim;Deuk Sik Lee;So-Young Lee;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.634-643
    • /
    • 2023
  • Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is caused by repeated exposure to harmful matter, such as cigarette smoke. Although Lilium longiflorum Thunb (LLT) has anti-inflammatory effects, there is no report on the fermented LLT bulb extract regulating lung inflammation in COPD. Thus, we investigated the protective effect of LLT bulb extract fermented with Lactobacillus acidophilus 803 in COPD mouse models induced by cigarette smoke extract (CSE) and porcine pancreas elastase (PPE). Oral administration of the fermented product (LS803) suppressed the production of inflammatory mediators and the infiltration of immune cells involving neutrophils and macrophages, resulting in protective effects against lung damage. In addition, LS803 inhibited CSE- and LPS-induced IL-6 and IL-8 production in airway epithelial H292 cells as well as suppressed PMA-induced formation of neutrophil extracellular traps in HL-60 cells. In particular, LS803 significantly repressed the elevated IL-6 and MIP-2 production after CSE and LPS stimulation by suppressing the activity of the nuclear factor kappa-light-chain-enhancer of activated B (NFκB) in mouse peritoneal macrophages. Therefore, our results suggest that the fermented product LS803 is effective in preventing and alleviating lung inflammation.

Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice

  • Van-Long Truong;Yeon-Ji Bae;Ji-Hong Bang;Woo-Sik Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.323-332
    • /
    • 2024
  • Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

The Anti-Inflammatory Effect of Trichilia martiana C. DC. in the Lipopolysaccharide-Stimulated Inflammatory Response in Macrophages and Airway Epithelial Cells and in LPS-Challenged Mice

  • Park, Ji-Won;Ryu, Hyung Won;Ahn, Hye In;Min, Jae-Hong;Kim, Seong-Man;Kim, Min-Gu;Kwon, Ok-Kyoung;Hwang, Daseul;Kim, Soo-Yong;Choi, Sangho;Zamora, Nelson;Rosales, Kattia;Oh, Sei-Ryang;Lee, Jae-Won;Ahn, Kyung-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1614-1625
    • /
    • 2020
  • A number of species of the genus Trichilia (Meliaceae) exhibit anti-inflammatory effects. However, the effect of Trichilia martiana C. DC. (TM) on lipopolysaccharide (LPS)-induced inflammation has not, to the best of our knowledge, yet been determined. Therefore, in the present study, the antiinflammatory effect of TM on LPS-stimulated RAW264.7 macrophages was evaluated. The ethanol extract of TM (TMEE) significantly inhibited LPS-induced nitric oxide (NO), prostaglandin 2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). TMEE also reduced the levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. The upregulation of mitogen-activated protein kinases (MAPKs) and NF-κB activation was revealed to be downregulated following TMEE pretreatment. Furthermore, TMEE was indicated to lead to the nucleus translocation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1). In H292 airway epithelial cells, the pretreatment of TMEE significantly downregulated the production of LPS-stimulated IL-1β, and TMEE was indicated to increase the expression of HO-1. In animal models exhibiting LPS-induced acute lung injury (ALI), treatment with TMEE reduced the levels of macrophages influx and TNF-α production in the bronchoalveolar lavage fluid (BALF) of ALI mice. Additionally, TMEE significantly downregulated the activation of ERK, JNK and IκB, and upregulated the expression of HO-1 in the lungs of ALI mice. In conclusion, the results of the current study demonstrated that TMEE could exert a regulatory role in the prevention or treatment of the endotoxin-mediated inflammatory response.

Effect of Angelicae Gigantis Radix for Inflammatory Response in HaCaT Cells (당귀(當歸) 추출물이 피부 각질형성세포의 염증반응에 미치는 영향)

  • Huh, Jung;Park, Hoyeon;Kim, Eom Ji;Kim, Eun-Young;Sohn, Youngjoo;Jung, Hyuk-Sang
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.9-19
    • /
    • 2022
  • Objectives : Angelicae Gigantis Radix (AG) is a plant of the Ranunculus family. AG have been reported to have various pharmacological effects on human health which include uterine growth promotion, anti-inflammatory, analgesic, and immune enhancement. However, research on dermatitis disease is insufficient. Therefore, we investigated the effects of AG on tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) stimulated HaCaT cell. Methods : To investigate the effect of AG on HaCaT cell, HaCaT cells were pre-treated with AG for 1 hour and then stimulated with TNF-α/IFN-γ. After 24 hours, media and cells were harvested to analyze the inflammatory mediators. Concentration of human interleukin-1beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-α in the media were assessed by ELISA. mRNA expression of human thymus and activation-regulated chemokine (TARC), IL-6, and IL-8 were analyzed by RT-PCR. Additionally, the mechanisms of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway were investigated by Western blot. Results : The treatment of AG inhibited gene expression levels of IL-6, IL-8, and TARC and protein expression levels of IL-1β, MCP-1, and GM-CSF. Also, AG significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation and NF-κB translocation in TNF-α/IFN-γ stimulated HaCaT cell. Conclusions : Taken together, these results demonstrate that AG can alleviate inflammatory diseases such as atopic dermatitis by regulating the expression of inflammatory cytokines. Also, it suggest that AG may a promising candidate drug for the treatment of inflammatory disease such as atopic dermatitis.

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes

  • Yeo, Hyunjin;Lee, Jeong Yeon;Kim, JuHwan;Ahn, Sung Shin;Jeong, Jeong You;Choi, Ji Hye;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.323-328
    • /
    • 2020
  • Matrix metalloproteinase 1 (MMP-1), a calcium-dependent zinccontaining collagenase, is involved in the initial degradation of native fibrillar collagen. Tissue necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that is rapidly produced by dermal fibroblasts, monocytes/macrophages, and keratinocytes and regulates inflammation and damaged-tissue remodeling. MMP-1 is induced by TNFα and plays a critical role in tissue remodeling and skin aging processes. However, the regulation of the MMP1 gene by TNFα is not fully understood. We aimed to find additional cis-acting elements involved in the regulation of TNFα-induced MMP1 gene transcription in addition to the nuclear factor-kappa B (NF-κB) and activator protein 1 (AP1) sites. Assessments of the 5'-regulatory region of the MMP1 gene, using a series of deletion constructs, revealed the requirement of the early growth response protein 1 (EGR-1)-binding sequence (EBS) in the proximal region for proper transcription by TNFα. Ectopic expression of EGR-1, a zinc-finger transcription factor that binds to G-C rich sequences, stimulated MMP1 promoter activity. The silencing of EGR-1 by RNA interference reduced TNFα-induced MMP-1 expression. EGR-1 directly binds to the proximal region and transactivates the MMP1 gene promoter. Mutation of the EBS within the MMP1 promoter abolished EGR-1-mediated MMP-1 promoter activation. These data suggest that EGR-1 is required for TNFα-induced MMP1 transcriptional activation. In addition, we found that all three MAPKs, ERK1/2, JNK, and p38 kinase, mediate TNFα-induced MMP-1 expression via EGR-1 upregulation. These results suggest that EGR-1 may represent a good target for the development of pharmaceutical agents to reduce inflammation-induced MMP-1 expression.

Protective Effects of Chijabaegpi-tang on Atopic Dermatitis in TNF-α/IFNγ-induced HaCaT Cells (피부각질세포에서 치자백피탕(梔子柏皮湯)의 아토피 피부염 개선효과)

  • Eun, So Young;Yoon, Jung Joo;Kim, Hye Yoom;Ahn, You Mee;Han, Byung Hyuk;Hong, Mi Hyeon;Son, Chan Ok;Na, Se Won;Lee, Yun Jung;Kang, Dae Gill;Lee, Ho Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.226-231
    • /
    • 2018
  • Chijabaegpi-tang (CHG) is an oriental herbal medicine that has been used for its various pharmacological effects, which include anti-inflammatory, anti-oxidant and immunoregulation activities. In the present study, we investigated which skin inflammations are involved in the $TNF-{\alpha}/IFN{\gamma}$-induced HaCaT cells. We investigated the suppressive effect of CHG on $TNF-{\alpha}/IFN{\gamma}$-induced HaCaT cell production of the following chemokines: macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8); thymus and activation-regulated chemokine (TARC)/CCL17. The pre-treatment of HaCaT cells with CHG suppressed $TNF-{\alpha}/IFN{\gamma}$-induced nuclear transcription factor kappa-B ($NF-{\kappa}B$). In addition, CHG inhibited $TNF-{\alpha}/IFN{\gamma}$-induced phosphorylation of ERK and p38. $TNF-{\alpha}/IFN{\gamma}$ suppressed the expression of skin barrier proteins, including filaggrin (FLG), Involucrin (IVL) and loricrin (LOR). By contrast, CHG restored the expression of FLG, IVL and LOR. Taken together, our findings suggest that CHG could be a therapeutic agent for prevention of skin disease, including atopic dermatitis.

The Effects of LR3 and SP6 Acupuncture on Renal Damage in Streptozotocin-induced Diabetic Mice (태충·삼음교의 침 자극이 Streptozotocin으로 유발된 당뇨쥐의 신장 손상에 미치는 영향)

  • Lee, Cho In;Lee, Hyun Jong;Lee, Yun Kyu;Lim, Seong Chul;Kim, Jae Soo
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.41-51
    • /
    • 2015
  • Objectives : This study was performed to investigate the effects of $LR_3$ and $SP_6$ acupuncture on renal damage in streptozotocin(STZ)-induced diabetic mice. Methods : ICR male mice were stabilized for a week and divided into four groups: a normal mice group(N), no-acupuncture diabetic mice group(Control), $LR_3$ acupuncture diabetic mice group($LR_3$), and $SP_6$ acupuncture diabetic mice group($SP_6$). Diabetes was experimentally induced by intraperitoneal injection of STZ(150 mg/kg) in citrate buffer(pH 4.5). For two weeks, $LR_3$ and $SP_6$ acupunctures were administered bilaterally at each point once a day. After two weeks, the animals' weight was measured and they underwent a laparotomy. Serum glucose and blood urea nitrogen(BUN) were measured from the blood taken from the heart. We measured glucose, reactive oxygen species(ROS), peroxynitrite($ONOO^-$) and thiobarbituric acid reactive substances(TBARS) in the kidney and compared expression levels of superoxide dismutases(SOD), glutathione peroxidase(GPx), nuclear factor-kappa B(NF-${\kappa}B$), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase(iNOS) and Interleukin-1 beta(IL-$1{\beta}$). Results : BUN significantly decreased in $LR_3$, $SP_6$ compared to the control group. $LR_3$ showed significantly decreased glucose compared to the control group. $LR_3$, $SP_6$ significantly decreased in ROS and $ONOO^-$ compared to the control group. $LR_3$ significantly decreased in TBARS compared to the control group. $SP_6$ significantly increased in expressions of SOD-1, catalase, and GPx compared to the control group. $LR_3$, $SP_6$ significantly decreased in COX-2 compared to the control group. $SP_6$ significantly decreased in IL-$1{\beta}$ compared to the control group. Conclusions : This study suggests that $LR_3$ acupuncture may be effective in controlling glucose and lipid peroxidation and that $SP_6$ acupuncture may have anti-oxidative and anti-inflammatory effects on renal damage in STZ-induced diabetic mice.