• 제목/요약/키워드: Nuclear detector

검색결과 611건 처리시간 0.028초

Voltage dependent pulse shape analysis of Geiger-Müller counter

  • Almutairi, B.;Akyurek, T.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1081-1090
    • /
    • 2019
  • Detailed pulse shape analysis of a Geiger-$M{\ddot{u}}ller$ counter is performed to understand the pulse shape dependence on operating voltage. New data is presented to demonstrate that not all pulses generated in a GM counter are identical. In fact, there is a strong correlation between the operating voltage and the pulse shape. Similar to detector deadtime, pulse shapes fall in three distinct regions. For low voltage region, where deadtime was reported to reduce with increasing voltage, pulse generated in this region was observed to have a fixed pulse width with a variable tail. The pulse width and fall time of the tail was observed to be a function of applied voltage; exponentially reducing with increasing voltage with an exponent of negative 6E-04 and 2E-03 respectively. The second region showed a pulse without any significant tail. During this time the detector deadtime was earlier reported to be at its minimum. The highest voltage region demonstrated a different deadtime mechanism where the second pulse was reduced in width. During this time the deadtime seemed to be increasing with increasing voltage. This data allows us to gain some unique insight into the phenomenon of GM detector deadtime not reported thus far.

Radiation detector deadtime and pile up: A review of the status of science

  • Usman, Shoaib;Patil, Amol
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1006-1016
    • /
    • 2018
  • Since the early forties, researchers from around the world have been studying the phenomenon of deadtime in radiation detectors. Many have attempted to develop models to represent this phenomenon. Two highly idealized models; paralyzable and non-paralyzable are commonly used by most individuals involved in radiation measurements. Most put little thought about the operating conditions and applicability of these ideal models for their experimental conditions. So far, there is no general agreement on the applicability of any given model for a specific detector under specific operating conditions, let alone a universal model for all detectors and all operating conditions. Further the related problem of pile-up is often confused with the deadtime phenomenon. Much work, is needed to devise a generalized and practical solution to these related problems. Many methods have been developed to measure and compensate for the detector deadtime count loss, and many researchers have addressed deadtime and pulse pile-up. The goal of this article is to summarize the state of science of deadtime; measurement and compensation techniques as proposed by some of the most significant work on these topics and to review the deadtime correction models applicable to present day radiation detection systems.

Implementation and benchmarking of the local weight window generation function for OpenMC

  • Hu, Yuan;Yan, Sha;Qiu, Yuefeng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3803-3810
    • /
    • 2022
  • OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.

Efficient design of a ∅2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment

  • Kim, Junhyeok;Park, Kyeongjin;Hwang, Jisung;Kim, Hojik;Kim, Jinhwan;Kim, Hyunduk;Jung, Sung-Hee;Kim, Youngsug;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1091-1097
    • /
    • 2019
  • After the Fukushima accident in 2011, there has been increased public concern about radioactive contamination of water resources through fallout in neighboring countries. However, there is still no available initial response system that can promptly detect radionuclides. The purpose of this research is to develop the most efficient gamma spectrometer to monitor radionuclides in an aquatic environment. We chose a thallium-doped sodium iodide (NaI(Tl)) scintillator readout with a silicon photo multiplier (SiPM) due to its compactness and low operating voltage. Three types of a scintillation detector were tested. One was composed of a scintillator and a photomultiplier tube (PMT) as a reference; another system consisted of a scintillator and an array of SiPMs with a light guide; and the other was a scintillator directly coupled with an array of SiPMs. Among the SiPM-based detectors, the direct coupling system showed the best energy resolution at all energy peaks. It achieved 9.76% energy resolution for a 662 keV gamma ray. Through additional experiments and a simulation, we proved that the light guide degraded energy resolution with increasing statistical uncertainty. The results indicated that the SiPM-based scintillation detector with no light guide is the most efficient design for monitoring radionuclides in an aquatic environment.

Performance of a Compton Suppression Spectrometer of the SNU-KAERI PGAA Facility

  • Sun Gwang Min;Park Chang Su;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.347-355
    • /
    • 2003
  • The \gamma-ray spectrometer of the PGAA (Prompt Gamma Activation Analysis) facility constructed at HANARO of the Korea Atomic Energy Research Institute was upgraded to the multi-mode spectrometer including the single mode, the Compton suppression mode and the pair mode. The performance of the spectrometer was tested and summarized. The background count rate and the uncertainty of the detection efficiency were reduced greatly in comparison with those before the new installation.

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

A STUDY ON INDUSTRIAL GAMMA RAY CT WITH A SINGLE SOURCE-DETECTOR PAIR

  • Kim Jong-Bum;Jung Sung-Hee;Kim Jin-Sup
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.383-390
    • /
    • 2006
  • Having its roots in medical applications, industrial gamma ray CT has opened up new roads far investigating and modeling industrial processes. Using a line of research related to industrial gamma ray CT, the authors set up a system of single source and detector gamma transmission tomography for wood timber and a packed bed phantom. The hardware of the CT system consists of two servo motors, a data logger, a computer, a radiation source and a radiation detector. One motor simultaneously moves the source and the detector for a parallel beam scanning, whereas the other motor rotates the scan table at a preset projection angle. The image is reconstructed from the measured projections by the filtered back projection method. The phantom was designed to simulate a cross section of a packed bed with a void. The radiation source was 20mCi of Cs-137 and the detector was a 1 inch $\times$ 1 inch NaI (TI) scintillator shielded by a lead collimator. The experimental gamma ray CT image has sufficient resolution to reveal air holes and the density distribution inside the phantom. The system could possibly be applied to a packed bed column or a pipe flow in a petrochemical plant.

Detection of voluminous gamma-ray source with a collimation beam geometry and comparison with peak efficiency calculations of EXVol

  • Kang, M.Y.;Sun, G.M.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2601-2606
    • /
    • 2020
  • In this study, we expanded the performance of the existing EXVol code and performed empirical experiments and calculations. A high-resolution gamma spectroscopy system was constructed, and a standard point source and a standard volume source were measured with an HPGe detector with 43.1% relative efficiency. EXVol was verified by quantitative comparison of the detection efficiencies determined by measurements and calculations. To introduce the concept of the detector scanning that occurs in the actual measurement into the EXVol code, a collimator was placed between the source and detector. The detection efficiency was determined in the asymmetric arrangement of the source and detector with a collimator. A collimator made of lead with a diameter of 15 mm and a thickness of 50 mm was installed between the source and the detector to determine the detection efficiency at a specific location. The calculation result was contour plotted so that the distribution of detection efficiency could be visually confirmed. The relative deviation between the measurements and calculations for the coaxial and asymmetric structures was 10%, and that for the collimation structure was 20%. The results of this study can be applied to research using γ-ray measurements.

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.

Radiation Detection System for Prevention of Illicit Trafficking of Nuclear and Radioactive Materials

  • Kwak, Sung-Woo;Chang, Sung-Soon;Yoo, Ho-Sik
    • Journal of Radiation Protection and Research
    • /
    • 제35권4호
    • /
    • pp.167-171
    • /
    • 2010
  • Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle.