• Title/Summary/Keyword: Nuclear Steam Generator

Search Result 671, Processing Time 0.027 seconds

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.

A Study on the Vent Path Through the Pressurizer Manway and Steam Generator Manway under Loss of Residual Heat Removal System During Mid-loop Operation in PWR (가압경수로의 부분충수 운전중 잔열제거계통 기능 상실사고시 가압기와 증기발생기 Manway 유출유로를 이용한 사고완화에 관한 연구)

  • Y. J. Chung;Kim, W. S.;K. S. Ha;W. P. Chang;K. J. Yoo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 1996
  • The present study is to analyze an integral test, BETHSY test 6.9c, which represent loss of RURS accident under mid-loop operation. Both the pressurizer manway and the steam generator outlet plenum manway are opened as vent paths in order to prevent the system from pressurization by removing the steam generated in the core. The main purposes are to gain insights into the physical phenomena and identify sensitive parameters. Assessment of capability of CATHARE2 prediction can be established the effective recovery procedures using the code in an actual plant. Most of important physical phenomena in the experiment could be predicted by the CATHARE2 code. The peak pressure in the upper plenum is predicted higher than experimental value by 7 kPa since the differential pressure between the pressurizer and the surge line is overestimated. The timing of core uncovery is delayed by 500 seconds mainly due to discrepancy in the core void distribution. It is demonstrated that openings of the pressurizer manwey and the steam generator manway can prevent the core uncovery using only gravity feed injection. Although some disagreements are found in the detailed phenomena, the code prediction is considered reasonable for the overall system behaviors.

  • PDF

A Fuzzy Controller for the Steam Generator Water Level Control and Its Practical Self-Tuning Based on Performance (증기발생기 수위제어를 위한 퍼지제어기 구현 및 제어성능지수를 이용한 제어기 의 Self-Tuning)

  • Na, Nan-Ju;Bien, Zeun-Gnam
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.317-326
    • /
    • 1995
  • The oater level control system of the steam generator in a pressurized water reactor and its control Problems are analysed. In this work a stable control strategy Particularly during low Power operation based on the fuzzy control method is studied. The control strategy employs substitutional information using the bypass valve opening instead of incorrectly measured signal at the low How rate as the fuzzy variable of the flow rate during low power operation, and includes the flexible scale adjusting method for fast response at a large transient. A self-tuning algorithm based on the control performance and the descent method is also suggested for tuning the membership function scale. It gives a practical way to tune the controller under real operation. Simulation was carried out on the Compact Nuclear Simulator set up at Korea Atomic Energy Research Institute and its result showed the good performance of the controller and effectiveness of its tuning.

  • PDF

Investigation of Wear Mechanisms of Tube Materials for Nuclear Steam Generators due to Stick-Slip Behavior under Fretting Conditions (프레팅 조건하에 있는 증기 발생기 세관재의 스틱-슬립 영역별 마멸 메커니즘 규명)

  • Lee Young-Ze;Jeong Sung-Hoon;Park Chi-Yong
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Fretting is the oscillatory motion with very small amplitudes, which usually occurs between two solid surfaces in contact. Fretting wear is the removal of material from contacting surfaces through fretting action. Fretting wear of steam generator tubes in nuclear power plant becomes a serious problem in recent years. The materials for the tubes usually are Inconel 690 (I-690) and Inconel 600 (I-600). In this paper, fretting wear tests for I-690 and I-600 were performed under various applied loads in water at room temperature. Results showed that the fretting wear loss of I-690 and I-600 tubes was largely influenced by stick-slip. The fretting wear mechanisms were the abrasive wear in slip regime and the delamination wear in stick regime. Also, I-690 had somewhat better wear resistance than I-600.

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

Evaluation of Tensile Properties of Alloy 690TT Steam Generator Tube at Room Temperature and 343℃ (상온과 343℃에서 Alloy 690TT 증기발생기 전열관의 인장물성치 평가)

  • Eom, Ki Hyeon;Kim, Jin Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.655-662
    • /
    • 2014
  • This study conducted tensile tests on an Alloy 690TT tube at room temperature (RT) and at $343^{\circ}C$ using tube- and ring-type specimens to investigate the stress-strain behavior and tensile properties of a steam generator (SG) tube in the axial and circumferential directions at RT and at the design temperature of a nuclear power plant (NPP). The results of the axial tensile test showed that yield point phenomena appeared at both RT and $343^{\circ}C$, and serrated flow in the stress-strain curve appeared at $343^{\circ}C$. Yield and tensile strengths for both directions were clearly lower at $343^{\circ}C$ compared to RT; however, the elongations were approximately the same at both test temperatures. Regardless of the test temperature, the strengths in the circumferential direction were lower by approximately 5~10 % than those in the axial direction. In addition, the test data revealed that the reduction in the yield and tensile strengths of the Alloy 690TT SG tube with the test temperature was more significant than that estimated by the temperature correction factor of ASME Sec.II.

CFD ANALYSIS FOR THERMAL MIXING CHARACTERISTICS OF A FLOW MIXING HEADER ASSEMBLY OF SMART (SMART 유동혼합헤더집합체 열혼합 특성 해석)

  • Kim, Y.I.;Bae, Y.M.;Chung, Y.J.;Kim, K.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.84-91
    • /
    • 2015
  • SMART adopts, very unique facility, an FMHA to enhance the thermal and flow mixing capability in abnormal conditions of some steam generators or reactor coolant pumps. The FMHA is important for enhancing thermal mixing of the core inlet flow during a transient and even during accidents, and thus it is essential that the thermal mixing characteristics of flow of the FMHA be understood. Investigations for the mixing characteristics of the FMHA had been performed by using experimental and CFD methods in KAERI. In this study, the temperature distribution at the core inlet region is investigated for several abnormal conditions of steam generators using the commercial code, FLUENT 12. Simulations are carried out with two kinds of FMHA shapes, different mesh resolutions, turbulence models, and steam generator conditions. The CFD results show that the temperature deviation at the core inlet reduces greatly for all turbulence models and steam generator conditions tested here, and the effect of mesh refinement on the temperature distribution at the core inlet is negligible. Even though the uniformity of FMHA outlet hole flow increases the thermal mixing, the temperature deviation at the core inlet is within an acceptable range. We numerically confirmed that the FMHA applied in SMART has an excellent mixing capability and all simulation cases tested here satisfies the design requirement for FMHA thermal mixing capability.

Monte Carlo Study of MOSFET Dosimeter Dose Correction Factors Considering Energy Spectrum of Radiation Field in a Steam Generator Channel Head (원전 증기발생기 수실 내 에너지 스펙트럼을 고려한 MOSFET 방사선검출기 선량보정인자 결정에 관한 몬테칼로 전산모사 연구)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.165-171
    • /
    • 2006
  • In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit #1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.652 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible $(\leq1.5%)$, which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease bit $\sim7%$ when we apply the dose correction factors.

A Study on Applicability of Ultrasonic Flowmeter to Feedwater Flow Measurements in Nuclear Power Plants (원자력발전소의 급수유량 측정에 대한 초음파유량계의 적용성 연구)

  • Yu Sung-Sik;Park Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.57-65
    • /
    • 2003
  • The measurement uncertainties of an ultrasonic flowmeter were analyzed to evaluate its applicability to the measurement of the steam generator feedwater flow-rate in a nuclear power plant. The analyses of measurement uncertainties of a reactor power were also performed with the analyses of feedwater flow measurement uncertainties. Two ultrasonic flowmeters based on a cross-correlation technique and a transit time method were used in this study. The ultrasonic flowmeters were installed on a feedwater pipe line of a typical 1000 MWe Korea-standardized nuclear power plant to take the necessary data. The results have shown that the measurement uncertainties of the ultrasonic flowmeters are adequately smaller than those or a venturi meter. The research has also indicated that the measurement uncertainties of the reactor power based on the ultrasonic flowmeter uncertainties are sufficiently bounded by the uncertainty range usually assumed in nuclear safety analyses.

A Model of the Operator Cognitive Behaviors During the Steam Generator Tube Rupture Accident at a Nuclear Power Plant

  • Mun, J.H.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.467-481
    • /
    • 1996
  • An integrated framework of modeling the human operator cognitive behavior during nuclear power plant accident scenarios is presented. It incorporates both plant and operator models. The basic structure of the operator model is similar to that of existing cognitive models, however, this model differs from those existing ones largely in too aspects. First, using frame and membership function, the pattern matching behavior, which is identified as the dominant cognitive process of operators responding to an accident sequence, is explicitly implemented in this model. Second, the non-task-related human cognitive activities like effect of stress and cognitive biases such as confirmation bias and availability bias, are also considered. A computer code, OPEC is assembled to simulate this framework and is actually applied to an SGTR sequence, and the resultant simulated behaviors of operator are obtained.

  • PDF