• Title/Summary/Keyword: Nuclear Steam Generator

Search Result 665, Processing Time 0.033 seconds

Open Die Forging of Steel Forgings for the Large Tubesheet (대형 튜브시트 단강품의 자유단조)

  • Kim D. K.;Kim J. C.;Kim Y. D.;Kim D. Y.;Kim J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.333-337
    • /
    • 2004
  • Steam Generator is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head, torus and tubesheet. These steel forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the open die forging process and manufacturing experience of large tubesheet forgings which will be used for the steam generator of 1,400MW nuclear power plant.

  • PDF

Numerical validation of burst pressure estimation equations for steam generator tubes with multiple axial surface cracks

  • Kim, Ji-Seok;Lee, Myeong-Woo;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.579-587
    • /
    • 2019
  • This paper provides further validation of the burst pressure estimation equations for multiple axial surface cracked steam generator tubes, recently proposed by the authors based on analytical local collapse load approach against systematic FE damage analysis results of Alloy 690 tubes with twin axial surface cracks. Wide ranges of the relative crack depth and multiple crack configurations are considered. Comparison shows good agreements, giving sufficient confidence of the proposed equations.

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

Calculation of the Reactance for a Magnetic Phase Created in a Steam Generator Tube Material

  • Ryu, Kwon-Sang;Jung, Jae-Kap;Son, Derac;Park, Duck-Gun
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.70-73
    • /
    • 2010
  • A magnetic phase is partly produced in a steam generator tube due to stress and heat, because steam generator tubes are exposed to high temperature, high pressure and radioactivity conditions. This adversely affects the safety of steam generator tubes. However, it is difficult to detect it using conventional eddy current methods. Therefore, a new type of probe is needed to separate the signals from the defects and magnetic phases. In this study, a new U-type yoke, which contained two types of coils, a magnetizing coil and detecting coil, was designed. In addition, the signal induced by the magnetic phase and defect in an Inconel 600 plate were simulated.

A study on the microcomputer-based adaptive control system of a steam generator (적응제어알고리즘을 이용한 원자력발전소용 증기발생기 수위제어 시스템에 관한 연구)

  • 배병환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.658-663
    • /
    • 1987
  • The new controller developed here, which is the facility with only one measurement, is a new concept for the level controller of the existing nuclear steam generator. A MACS (Microcomputer-based Adaptive Control System of a Steam Generator) is quite practical and efficient, and has also simple structure and higher flexibility in the installment for actual plant. A key ingredient of this system is adaptive regulator which can calculate adaptive, optimal valve position in response to changes in the dynamics of the process and the disturbances. In spite of many difficulties in the steam generator water level control at low power, it can be concluded from the experimental and simulation results, that the MACS can provide optimal, robust steam generator level control from zero to full power. The amount of the control input effort can be reduced by adjusting the weighting factor. However, the steady state water level errors are generated. To avoid the steady errors, the different adaptive algorithm should be investigated in the future. The 3 second sampling time is acceptable for this system. However, action should be taken to shorten the sampling time for better digital control.

  • PDF

Improvement of Steam Generator Model for DSNP with Two-Region Tube Bundle Model for CANDU Transient Simulation (2영역 튜브모텔을 고려한 CANDU 시뮬레이션용 DSNP 증기발생기 모델 개선)

  • Cheon, Im-Jae;Seung, Seo-Jae
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.135-140
    • /
    • 1994
  • An improved steam generator model has been developed for the DSNP simulation of normal operational transient behavior of CANDU nuclear power plant. For more realistic prediction of steam generator behavior during transient, tube bundle region is divided into two separate control volumes, subcooled region and saturated region, and the variation of thermal hydraulic properties in the control volume is accounted for more realistic estimates of outlet enthalpy of each control volume. Test results for typical CANDU operational transient case show reasonable transient behavior of steam generator with overall CANDU operation and improved operational characteristics of steam generator with power variation.

  • PDF

A Simulation Test of Load Rejection for Steam Turbine Generator in a 680MW Nuclear Power Plant (680MW 원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1605-1606
    • /
    • 2007
  • An electrical generator in power plant is driven and maintained its speed at rated by steam turbine. By the way, after synchronization in parallel with the power system, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip set point by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a field simulation test of generator load rejection to be implemented on the turbine governor in a 680MW nuclear power plant before its startup.

  • PDF

Welding Characteristics of Inconel Plate Using Pulsed Nd : YAG Laser Beam (펄스형 Nd:YAG 레이저빔을 이용한 인코넬 판재의 용접 특성)

  • 변진귀;박광수;한원진;심상한
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.12-20
    • /
    • 2000
  • The nuclear steam generators are subjected to corrosion environmental condition during operation that can result in stress corrosion in the tube wall. If any tube wall degradation is recognized, the tube must be repaired by plugging or sleeving. For the sleeving repair, Nd : YAG laser welded sleeving technology is one of the most promising when considering radioactive working conditions in the nuclear power plant. In this paper, the laser welding characteristics of steam generator tube and sleeve materials are investigated. The effects of average laser power, laser energy, welding speed, pulse duration and frequency are evaluated. Based on these results, Nd : YAG laser welded sleeving repair was applied to the degraded steam generator tubes in real environment.

  • PDF

CONSIDERATIONS FOR METALLOGRAPHIC OBSERVATION OF INTERGRANULAR ATTACK IN ALLOY 600 STEAM GENERATOR TUBES

  • HUR, DO HAENG;CHOI, MYUNG SIK;LEE, DEOK HYUN;HAN, JUNG HO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.934-938
    • /
    • 2015
  • This technical note provides some considerations for the metallographic observation of intergranular attack (IGA) in Alloy 600 steam generator tubes. The IGA region was crazed along the grain boundaries through a deformation by an applied stress. The direction and extent of the crazing depended on those of the applied stress. It was found that an IGA defect can be misevaluated as a stress corrosion crack. Therefore, special caution should be taken during the destructive examination of the pulled-out tubes from operating steam generators.

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.