• Title/Summary/Keyword: Nuclear Safety Analysis

Search Result 1,644, Processing Time 0.029 seconds

Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

  • Ren, Siyuan;Xia, Chenyang;Liu, Limin;Wu, Xiaojie;Yu, Qiang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1278-1292
    • /
    • 2018
  • Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a $1.54m^2$ full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

Stress Analysis of Expansion Transition Area in Steam Generator Tube of Optimized Power Reactor-1000 (한국표준형원전 증기발생기 전열관 확관부위의 응력해석)

  • Kim, Young Kyu;Song, Myung Ho;Yoo, One
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The steam generators of OPR-1000 plants have Alloy 600 and Alloy 690 as the tube material and its tube expansion method is the explosive expansion method. According to the experience of these plants, circumferential cracks were largely occurred in steam generator tubes expanded by the explosive expansion method and their locations were the outer surface of tube expansion transition region surrounding with piled-up sludge. But even though tubes have the same conditions, tubes with the hydraulic expansion method shows the prevail trend of axial cracks compared to circumferential cracks. Therefore in this study, in order to identify the difference of such phenomena as above, configurations of tube and tubesheet were modeled and at operating conditions, stress values applied in the tube expansion transition area in accordance with tube expansion methods were calculated by using computational program and the direction and the predominance of cracks were evaluated.

A mite Element Modeling for the Puncture Drop Test of a Cask with the Failure of Impact Limiter (충격완충체의 효과를 고려할 수 있는 운반용기의 파열낙하시험 유한요소해석 방법)

  • Kwon, Kie-Chan;Seo, Ki-Seog;You, Gil-Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • Transport package for radioactive material should be structurally safe under puncture drop condition and its safety should be verified by test and numerical analysis. Most finite element analyses for puncture drop have been performed without modeling the impact limiter since failure is occurred in the materials of the impact limiter. This paper presents a new modeling methodology, where an element is eroded in case that the material's failure criteria are reached at the element's integration point, to investigate the effect of the impact limiter in the puncture process. The effectiveness of the proposed scheme is shown through the puncture drop analysis of hotcell transport cask, which is under design in KAERI. The results show that about 80 percent of the total impact energy is absorbed due to the deformation of impact limiter. Using the present method the puncture drop can be analyzed more accurately, but it would give conservative results compared to the actual test condition.

  • PDF

Analysis of Social Issues of the Newspaper Articles on Gyeongju Earthquakes (신문기사에 나타난 경주지진 사건의 사회적 이슈분석)

  • Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.53-72
    • /
    • 2017
  • The purpose of this study is to analyze types and features social issues about the Gyeongju earthquakes 2016, South Korea. The specific purpose is to identify types of topics related to Gyeongju Earthquakes, changes of topics over time, and the differences of topics depending on the each type of newspapers. According to the result of topic modeling, 55 topics were extracted. The result of this study is following these. First, the main topics have been changed with the course of time. In September, various topics were emerged, specifically urgent issues was found during two weeks after the first earthquake. After October, topics about social problems derived from the earthquakes received much attention at that time. Topics related to safety problems about nuclear plant have steadily found in all period. Second, topics varied depending whether the newspaper is national or regional. Also, differences of topics were found when dividing the newspapers by their characteristics considered conservative or liberal.

Analysis of Experimental Modal Properties of an Electric Cabinet via a Forced Vibration Test Using a Shaker (가진기를 이용한 강제진동시험에 의한 전기 캐비닛의 실험적 모드특성 분석)

  • Cho, Sung-Gook;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • Accurate modal identification analysis is required to reasonably perform a seismic qualification of safety-related electric equipment installed in nuclear power plants (NPPs). This study evaluates a variation of the modal properties of an electric equipment cabinet structure in NPPs according to the excitation levels. For the study, an actual electric equipment cabinet was selected as a specimen and was dynamically tested by using a portable exciter in accordance with the level of input vibration energy. Tests were classified into two sets: with-door cases, and without-door cases. Frequency response functions were computed from the signals of the acceleration responses and input motions measured from the vibration tests. A polynomial curve fitting algorithm was used to extract the modal properties from the frequency response functions. This study reviews the variation of the modal properties according to the variation of the excitation levels. The results of the study show that the modal frequencies and the modal dampings of the object specimen varies nonlinearly according to the excitation level of the test motion. Attaching the door increases the modal damping of the cabinet.

Evaluation of Probabilistic Fracture Mechanics for Reactor Pressure Vessel under SBLOCA (소규모 냉각재 상실사고하의 원자로 압력용기에 대한 확률론적 파괴역학 평가)

  • Kim, Jong Wook;Lee, Gyu Mahn;Kim, Tae Wan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • In order to predict a remaining life of a plant, it is necessary to select the components that are critical to the plant life. The remaining life of those components shall be evaluated by considering the aging effect of materials used as well as numerous factors. However, when evaluating reliability of nuclear structural components, some problems are quite formidable because of lack of information such as operating history, material property change and uncertainty in damage models. Accordingly, if structural integrity and safety are evaluated by the deterministic fracture mechanics approach, it is expected that the results obtained are too conservative to perform a rational evaluation of plant life. The probabilistic fracture mechanics approaches are regarded as appropriate methods to rationally evaluate the plant life since they can consider various uncertainties such as sizes and shapes of cracks and degradation of material strength due to the aging effects. The objective of this study is to evaluate the structural integrity for a reactor pressure vessel under the small break loss of coolant accident by applying the deterministic and probabilistic fracture mechanics. The deterministic fracture mechanics analysis was performed using the three dimensional finite element model. The probabilistic integrity analysis was based on the Monte Carlo simulation. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT.

  • PDF

A Study on the Feasibility of Evaluating the Complexity of KTX Driving Tasks (KTX 운전직무에 대한 복잡도 평가 - 타당성 연구)

  • Park, Jin-Kyun;Jung, Won-Dea;Jang, Seung-Cheol;Ko, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.744-750
    • /
    • 2009
  • According to the result of related studies, the degradation of human performance has been revealed as one of the most significant causes resulting in the safety of any human-involved system. This means that preventing the occurrence of accidents/incidents through avoiding the degradation of human performance is prerequisite for their successive operation. To this end, it is necessary to develop a plausible tool to evaluate the complexity of a task, which has been known as one of the decisive factors affecting the human performance. For this reason, in this paper, the complexity of tasks to be conducted by KTX drivers was quantified by TACOM measure that is enable to quantify the complexity of proceduralized tasks being used in nuclear power plants. After that, TACOM scores about the tasks of KTX drivers were compared with NASA-TLX scores that are responsible for the level of a subjective workload to be felt by KTX drivers.

Lifetime Risk Assessment of Lung Cancer Incidence for Nonsmokers in Japan Considering the Joint Effect of Radiation and Smoking Based on the Life Span Study of Atomic Bomb Survivors

  • Shimada, Kazumasa;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.83-97
    • /
    • 2021
  • Background: The lifetime risk of lung cancer incidence due to radiation for nonsmokers is overestimated because of the use of the average cancer baseline risk among a mixed population, including smokers. In recent years, the generalized multiplicative (GM)-excess relative risk (ERR) model has been developed in the life span study of atomic bomb survivors to consider the joint effect of radiation and smoking. Based on this background, this paper discusses the issues of radiation risk assessment considering smoking in two parts. Materials and Methods: In Part 1, we proposed a simple method of estimating the baseline risk for nonsmokers using current smoking data. We performed sensitivity analysis on baseline risk estimation to discuss the birth cohort effects. In Part 2, we applied the GM-ERR model for Japanese smokers to calculate lifetime attributable risk (LAR). We also performed a sensitivity analysis using other ERR models (e.g., simple additive (SA)-ERR model). Results and Discussion: In Part 1, the lifetime baseline risk from mixed population including smokers to nonsmokers decreased by 54% (44%-60%) for males and 24% (18%-29%) for females. In Part 2, comparison of LAR between SA- and GM-ERR models showed that if the radiation dose was ≤200 mGy or less, the difference between these ERR models was within the standard deviation of LAR due to the uncertainty of smoking information. Conclusion: The use of mixed population for baseline risk assessment overestimates the risk for lung cancer due to low-dose radiation exposure in Japanese males.

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part I - Derivation of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제1부 - 보정 함수 유도)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.73-83
    • /
    • 2022
  • This paper is concerned with an analysis of a surface edge crack emanated from a sharp contact edge. For a geometrical model, a square wedge is in contact with a half plane whose materials are identical, and a surface perpendicular crack initiated from the contact edge exists in the half plane. To analyze this crack problem, it is necessary to evaluate the stress field on the crack line which are induced by the contact tractions and pseudo-dislocations that simulate the crack, using the Bueckner principle. In this Part I, the stress filed in the half plane due to the contact is re-summarized using an asymptotic analysis method, which has been published before by the author. Further focus is given to the stress field in the half plane due to a pseudo-edge dislocation, which will provide a stress solution due to a crack (i.e. a continuous distribution of edge dislocations) later, using the Burgers vector. Essential result of the present work is the corrective functions which modify the stress field of an infinite domain to apply for the present one which has free surfaces, and thus the infiniteness is no longer preserved. Numerical methods and coordinate normalization are used, which was developed for an edge crack problem, using the Gauss-Jacobi integration formula. The convergence of the corrective functions are investigated here. Features of the corrective functions and their application to a crack problem will be given in Part II.

Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea (국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kim, Gungyu;Choi, In-Kil;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.