• Title/Summary/Keyword: Nuclear Research Facilities

Search Result 385, Processing Time 0.038 seconds

Regional Production, Income and Employment Impact of Nuclear Power Plant (원자력발전소(原子力發電所)가 지역(地域)의 생산(生産), 소득(所得)과 고용(雇傭)에 미치는 효과(效果) 분석(分析))

  • Shin, Yong-In;Yang, Kwang-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.272-284
    • /
    • 1996
  • The present study has quantitatively assessed the regional production, income and employment impact resulting from the construction and operation of nuclear power plant (NPP) upon the domestic local areas by applying the regional input-output analysis model to the case of Wolsong unit-l site. The conclusions regarding the most likely regional economic impacts upon the wolsong site are summarized as follows: 1. The income multipliers are calculated to be 1.563 for the construction phase and 1.500 for the operation phase. These values are relatively high compared with those of other conventional facilities. 2. The level of total employee's wage induced employment associated with the construction phase has been estimated to be 37,000 while that with the operational phase in 1990 to be 5,610. 3. With relation to the aspect of resident welfare it is found that the industrial sector associated with electricity, gas and water supply have remarkably improved with the construction of the NPP. 4. The NPP siting has induced substantial changes in interindustry (input-output) structures of the Wolsong unit-l site which is one of the rural areas where all the domestic NPPs are sited. Such changes are attributed to the industrial recomposition of the region. 5. With the application of other regional economic analysis models and the use of more sufficient regional data, other detailed studies on the economic impact analysis of domestic NPP-related facility sitings are suggested to be carried out further since the influence of NPP sitings is significant to the national economic impact as well as the regional economic impact.

  • PDF

CBD process applying for DEFACS (원자력 해체시설 특성관리 시스템을 위한 CBD 프로세스의 적용 방안)

  • Cho, Woonhyoung;Park, Seungkook;Choi, Yundong;Moon, Jeikwon
    • Journal of Software Engineering Society
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Characteristic of decommissioning target facility investigate and understand is very important. because radioactive materials occurs in the decommissioning and dismantling, so it is difficult to use a general dismantling method. Decommissioning nuclear facilities, the characteristics of the target of research to predict the amount of decommissioning waste, decommission projects costing is largely utilized. For this purpose, we developed DEFACS(Decommissioning Facility Characterization DB System) that manage characteristic of decommissioning target facility. But nuclear facility decommissioning takes long time. so we inevitably developed system during decommissioning works, it occurs many system changes. For this reason, it is difficult to apply general development process, so we take CBD process that divide CD(Component Development) and CBSD(Component Based Software Development) for handling change of requirement. it make Component of the overall system for changes to minimize changes by strengthening the independence of components and processes due to changes in requirements were to minimize stopping of the process.

  • PDF

Preliminary Study on Rapid Measurement of Gross Alpha/Beta and 90Sr Activities in Surface Soil by Mobile ZnS(Ag)/PTV Array and Handheld PVT Rod with Gated Energy Channels

  • Lee, Chanki;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.194-203
    • /
    • 2021
  • Background: Surface soil radiation monitoring around nuclear facilities is important to classify and characterize the contaminated areas. A scanning and direct measurement technique can survey the sites rapidly before starting sampling analysis. Materials and Methods: Regarding this, we test and suggest a measurement technique for gross alpha/beta and 90Sr activities in surface soil based on a mobile ZnS(Ag)/PVT (polyvinyltoluene) array and a handheld PVT rod, respectively. To detect 90Sr selectively in soil mixed with naturally occurring radioactive materials, chosen energy channel counts from the multichannel analyzers were used instead of whole channel counts. Soil samples contaminated with exempt liquid 90Sr with 1 Bq·g-1, 3 Bq·g-1, and 10 Bq·g-1 were prepared and hardened by flocculation. Results and Discussion: The mobile ZnS(Ag)/PVT array could discriminate gross alpha, gross beta, and gamma radiation by the different pulse-shaped signal features of each sensor material. If the array is deployed on a vehicle, the scan minimum detectable concentration (MDC) range will be about 0.11-0.17 Bq·g-1 at 18 km·h-1 speed, highly sensitive to actual sites. The handheld PVT rod with 12 mm (Φ) × 20 mm (H) size can directly measure 90Sr selectively if channels on which energies are from 1,470 and 2,279 keV are gated, minimizing crossdetection of other radionuclides. These methods were verified by measuring soil samples fabricated with homogeneous 90Sr concentrations, showing static MDC of 2.16 Bq·g-1 at a measurement time of 300 seconds. Conclusion: Based on the results, comprehensive procedures using these detectors are suggested to optimize soil sites survey.

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.

Corium melt researches at VESTA test facility

  • Kim, Hwan Yeol;An, Sang Mo;Jung, Jaehoon;Ha, Kwang Soon;Song, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1547-1554
    • /
    • 2017
  • VESTA (Verification of Ex-vessel corium STAbilization) and VESTA-S (-small) test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging $ZrO_2$ melt jet on a sacrificial material were performed to investigate the ablation characteristics. $ZrO_2$ melt in an amount of 65-70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40), and the other is a stainless steel (SUS304) melt. Metallic melt in an amount of 1.5-2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. $ZrO_2$ melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is $UO_2$ 60%, Zr 10%, $ZrO_2$ 15%, SUS304 14%, and $B_4C$ 1%, was melted in a cold crucible using an induction heating technique.

Comparison of Pretreatment Methods for Determination of 55Fe and 63Ni Activity in Nuclear Wastes Sample (원자력 시설 해체 폐기물 내 55Fe 와 63Ni 방사능 분석을 위한 전처리 방법 비교 연구)

  • Lee, Hoon;Lim, Jong-Myoung;Ji, Young-Yong;Jung, Kun-Ho;Kang, Mun-Ja;Choi, Geun-Sik;Lee, Jin-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • 55Fe and 63Ni are key factors in deciding the proper handling of the decommissioning of radioactive waste from nuclear facilities. For determining beta emitting radionuclides, the dismantled waste samples should be completely decomposed and separated from the sample matrix. This study reports the comparison results of the recovering efficiencies of Iron and Nickel with wet digestion methods that use various acids and alkali-fusion methods. Various matrices of NIST SRMs (1646a, 1944, 8704, 2709a, and 1633c), the recovering efficiencies of using alkali-fusion methods ranged from 95.3 to 98.3% for Iron, and from 86.6 to 88.1% for Nickel within about 2% of relative standard deviation. On the other hand, those using one of the three wet digestion methods ranged from 77.9 to 105.3% for Iron and from 40.1 to 78.5% for Nickel with over 10% of relative standard deviation. Therefore, one may draw the conclusion that the analytical results derived from Iron and Nickel using alkali-fusion methods are fairly reliable due to the recovering efficiencies observed.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

A Study of the Determination of the Priority of Strategies for the Activation of the Business Ecosystem of Big Science: With a Focus on Nuclear Fusion and Accelerator Devices (거대과학 산업생태계 활성화 전략의 우선순위 결정에 관한 연구: 핵융합과 가속기 장치를 중심으로)

  • Cho, Wonjae;Kim, Youbean;Tho, Hyunsoo;Chang, Hansoo
    • Journal of Korea Technology Innovation Society
    • /
    • v.16 no.4
    • /
    • pp.1163-1186
    • /
    • 2013
  • Big science such as nuclear fusion accelerators shares the characteristic of requiring long-term and massive budget input, human power, and related state-of-the-art technology. Because big science, by nature, thus requires large-scale budgets and facilities yet harbors the possibility of failure, most projects are led by the government. When the actual circumstances are examined, however, such projects are often implemented through the formation of cooperative relations with small and medium businesses (SMBs) possessing outstanding technological capacity. On the other hand, the reality is that the entry of corporations into the business ecosystem of big science is not easy and that even those that have once entered big science likewise fail to find sales outlets for technology that they have developed following the supply of single items, thus leading their technological capacity to lie idle. Consequently, based on an awareness of the problem, the present study seeks to propose strategies for activating the business ecosystem of nuclear fusion and accelerators and to present alternatives regarding which policy tasks must be pursued first by using the analytic hierarchy process (AHP) technique. The present study derived the four policy alternatives of approach, care, expansion, and infrastructures in accordance with the results of empirical analysis to activate the business ecosystem of nuclear fusion and accelerators and analyzed their priority in terms of urgency and effectiveness, the results of which were, in this order: care-approach-expansion-infrastructures. The significance of such research results lie in presenting the policy direction when the government determines which policy task must be pursued first and implements strategies for the activation of the business ecosystem of nuclear fusion and accelerators with limited financial resources in the future.

  • PDF

The Study for the Fast Detection of the Stereo Radiation Detector using the Image Processing (영상처리기반 스테레오 감마선 탐지장치의 고속탐지에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1103-1105
    • /
    • 2015
  • Leaked Radioactive source in nuclear power station, radiation related facilities and the aging nuclear power plant for the dismantling must need to detect and remove early to prevent major accidents. In this paper, we implemented a single sensor-based gamma-ray detectors stereo which can provide the distance to the radiation source, a direction and doserate information for fast and efficient decontamination work the radiation source. And we have carried out an algorithm development for high-speed detection of the detection equipment. Two detectors are required for stereo structure for obtaining the distance information of the radioactive source, but we designed the only sensor-based detection device for the weight reduction. We have extracted the region of interest and obtained the distance calculation result and distribution of radiation source in order to minimize a stereo image acquisition time. Detection time of the algorithm showed a shorter time of about 41%.

  • PDF

A Development of an Array Guided Wave Ultrasonic Testing System for pipe inspection (배관 진단을 위한 배열형 유도초음파 검사시스템 개발)

  • Cho, Hyun-Joon;Lee, Dong-Hoon;Kang, To;Park, Jin-Ho;Han, Seong-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.29-35
    • /
    • 2015
  • Pipes, commonly used in energy and petrochemical facilities, have various types of defects induced by diverse factors and this is often issued in NDE society. Ultrasonic guided wave inspection method are normally adopted to insure the healthiness of industry pipes. Recently, ultrasonic guided wave inspection is shifted to adopt arrayed probes and system. And here we developed an array guided wave ultrasonic testing system can adapt arrayed probes and focusing methods. In this paper, an array guided wave ultrasonic testing system is presented including a transmitting focusing technique and flaw signal level enhancement.