• 제목/요약/키워드: Nuclear Reactor Thermal-Hydraulics

검색결과 100건 처리시간 0.024초

Development and testing of the hydrogen behavior tool for Falcon - HYPE

  • Piotr Konarski;Cedric Cozzo;Grigori Khvostov;Hakim Ferroukhi
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.728-744
    • /
    • 2024
  • The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended time-frames like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon - HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments

  • Dokhane, A.;Vasiliev, A.;Hursin, M.;Rochman, D.;Ferroukhi, H.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1804-1812
    • /
    • 2022
  • The aim of this paper is to assess the reliability and accuracy of the PSI standard method, used in many previous works, for the quantification of ND uncertainties in the SPERT-III RIA transient, by quantifying the discrepancy between the actual inserted reactivity and the original static reactivity worth and their associated uncertainties. The assessment has shown that the inherent S3K neutron source renormalization scheme, introduced before starting the transient, alters the original static reactivity worth of the transient CR and reduces the associated uncertainty due to the ND perturbation. In order to overcome these limitations, two additional methods have been developed based on CR adjustment. The comparative study performed between the three methods has showed clearly the high sensitivity of the obtained results to the selected approach and pointed out the importance of using the right procedure in order to simulate correctly the effect of ND uncertainties on the overall parameters in a RIA transient. This study has proven that the approach that allows matching the original static reactivity worth and starting the transient from criticality is the most reliable method since it conservatively preserves the effect of the ND uncertainties on the inserted reactivity during a RIA transient.

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

ASSESSMENT OF CONDENSATION HEAT TRANSFER MODEL TO EVALUATE PERFORMANCE OF THE PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Cho, Yun-Je;Kim, Seok;Bae, Byoung-Uhn;Park, Yusun;Kang, Kyoung-Ho;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.759-766
    • /
    • 2013
  • As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for 3rd-generation (GEN-III) nuclear power plants that are driven by passive systems. The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the Advanced Power Reactor Plus (APR+), and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. The heat removal capability of the PAFS is strongly dependent on the heat transfer at the condensate tube in Passive Condensation Heat Exchanger (PCHX). To evaluate the model of heat transfer coefficient for condensation, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used to simulate the experimental results from PAFS Condensing Heat Removal Assessment Loop (PASCAL). The Shah model, a default model for condensation heat transfer coefficient in the MARS code, under-predicts the experimental data from the PASCAL. To improve the calculation result, The Thome model and the new version of the Shah model are implemented and compared with the experimental data.

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

Surrogate based model calibration for pressurized water reactor physics calculations

  • Khuwaileh, Bassam A.;Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1219-1225
    • /
    • 2017
  • In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.