• 제목/요약/키워드: Nuclear Reactor Pressure Vessel

검색결과 259건 처리시간 0.021초

가압열충격을 받는 원자로의 확률론적 파괴해석 (Probabilistic Fracture Analysis of Nuclear Reactor Vessel under Pressurized Thermal Shock)

  • 김지호;김종욱;김종인;박근배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.309-316
    • /
    • 2004
  • A probabilistic structural integrity assessment is performed for a reactor pressure vessel under PTS(Pressurized Thermal Shock). A semi-elliptical finite axial crack is assumed to he in the beltline region(either base metal or weld meta)1 of the reactor vessel inside surface. The selected random variables are initial crack depth, neutron fluence on the vessel inside surface, copper, nickel, and phosphorus content of the vessel material, and RT/sub NDT/. The probabilities of crack initiation or vessel failure where the crack is propagated through vessel wall are calculated. The probabilities obtained with random crack size are compared to these obtained with deterministic us. Since the failure function cannot to explicitly by selected by selected random variables, Monte Carlo Simulation is applied to perform probabilistic analysis The influence of the amount of neutron fluence is also examined to assess the structural reliability for vessel life time.

  • PDF

Evaluation Methodology of Remote Dismantling Equipment for Reactor Pressure Vessel in Decommissioning Project

  • Hyun, D.J.;Choi, B.S.;Jeong, K.S.;Lee, J.H.;Kim, G.H.;Moon, J.K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2013
  • A novel methodology to evaluate remote dismantling equipment for a reactor pressure vessel (RPV) in a decommissioning project is presented in this paper. The remote dismantling equipment, mainly composed of cutting tools and positioning equipment, is absolutely required to cut and handle highly radioactive and large components in nuclear power plants (NPPs); this equipment has a great effect on the overall success of the decommissioning project. Conventional evaluation methods have only focused on cutting technologies or positioning equipment, although remote dismantling equipment cannot achieve its goal without organic interaction between the cutting tools and the positioning equipment. In this paper, the cutting tools and the positioning equipment are evaluated by performance parameters according to their original characteristics, the relationship between the two systems, and common factors. Finally, the remote dismantling equipment used in recent decommissioning projects has been evaluated based on the proposed methodology. The results of this paper are expected to be useful for future decommissioning projects.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.