• 제목/요약/키워드: Nuclear Reaction

검색결과 1,028건 처리시간 0.032초

Thermal Decomposition Reaction of Gas-phase Uranyl Complexes as Studied by in-Situ IR Spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2002년도 춘계공동학술발표회요약집
    • /
    • pp.420.1-420
    • /
    • 2002
  • Thermal decomposition reaction of gas-phase UO2(hfacac)2. THF was investigated in a static cell. IR spectroscopic method was used to study the thermal decomptsition of gas phase uranyl complexes. The decomposition reaction products were separated by using thermal-gradient fractional sublimation method utilizing the differences in their volatility.

  • PDF

ASSESSMENT OF PROPERTIES AND DURABILITY OF FLY ASH CONCRETE USED IN KOREAN NUCLEAR POWER PLANTS

  • Cho, Myung-Sug;Noh, Jae-Myoung
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.331-342
    • /
    • 2012
  • Since the opening of the Shin-Kori #1,2 in 2005, fly ash mixed concrete has been used for NPP concrete structures under construction in Korea with the aim of preventing aging and improving durability. In this paper, the quality suitability of fly ash manufactured in Korea is assessed and the basic physical properties of fly ash mixed concrete and its durability against primary causes of aging are verified through experimental methods. Because of the internal structure filling effect from the pozzolanic reaction of fly ash and the resulting improvements in mechanical performance in such areas as strength and salt damage resistance, the durability of fly ash mixed concrete is shown to be superior. It is judged that this result can be applied in measures not only for improving the safety of NPP structures in operation in Korea but also for implementing effective structure life management should extending the life of structures be needed in the future.

Study on producing radioisotopes based on fission or radiative capture method in a high flux reactor

  • Wei Xu;Jian Li;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3585-3593
    • /
    • 2024
  • Radioisotopes tend to play important roles in many fields, such as industry, healthcare, agriculture, aerospace, etc. Radioisotope production is mainly through accelerators or research reactors, and high flux research reactor is one of the most effective approaches for radioisotope production. The physical basis of preparing radioisotope relies on nuclear reactions occurring in the reactor core, which includes fission, (n,γ), (n,α), and (n,p) reaction, etc. Among them, fission and (n,γ) reaction are most important in the nuclear reactor. For example, the 99Mo could be generated by uranium fission and extracting from the fission products, or through the radiative capture reaction from enriched 98Mo. As for the fission method, the irradiation target is gradually transitioning from high enriched uranium (HEU) target to low enriched uranium (LEU) target due to the requirement of non-proliferation. In this paper, studies on the impacts of different fission targets on radioisotope productions are conducted. Moreover, an optimized study on the radiative capture method is performed to improve the production efficiency. It is concluded that it is advantageous to use radiative capture method to generate radioisotopes in high flux reactor, which helps to improve the specific activity with environmental friendliness.

NUCLEAR DATA MEASUREMENT OF 186RE PRODUCTION VIA VARIOUS REACTIONS

  • Bidokhti, Pooneh Saidi;Sadeghi, Mahdi;Fateh, Behrooz;Matloobi, Mitra;Aslani, Gholamreza
    • Nuclear Engineering and Technology
    • /
    • 제42권5호
    • /
    • pp.600-607
    • /
    • 2010
  • Rhenium-186, having a half-life of 90.64 h, is an important radionuclide, used in metabolic radiotherapy and radio immunotherapy. $^{186}Re$ hydroxyethylidene diphosphonate (HEDP) is a new compound used for the palliation of painful skeletal metastases. Its production is achieved via charged-particle-induced reactions; the data are available in EXFOR library. For the work discussed in this paper, production of $^{186}Re$ was done via $^{nat}W(p,n)^{186}Re$ nuclear reaction. Pellets of $^{nat}W$ were used as targets and were irradiated with 15, 17.5, 20, 22.5, 25 MeV proton beams at 5 ${\mu}A$ current. The radiochemical separation was performed by the ion exchange chromatography method. The production yield achieved at 25 MeV was 1.91 $MBq{\cdot}{\mu}A^{-1}{\cdot}h^{-1}$. Excitation functions for the $^{186}Re$ radionuclide, via $^{186}W(p,n)^{186}Re$ and $^{186}W(d,2n)^{186}Re$ reactions were calculated by ALICE-ASH and TALYS-1.0 codes to validate and fit the experimental data and to obtain a recommended set of data for $^{186}W(p,n)^{186}Re$ reaction. Required thickness of the targets was obtained by SRIM code for each reaction.

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.

100 MeV 양성자를 이용한 natW(p,xn)176Re 핵반응의 상대 핵반응단면적 측정에 대한 연구 (A Study on the Measurement of the Relative Nuclear Reaction Cross-Section of the natW(p,xn)176Re Reaction using 100 MeV Proton)

  • 이삼열
    • 한국방사선학회논문지
    • /
    • 제15권2호
    • /
    • pp.257-263
    • /
    • 2021
  • 본 연구는 한국원자력연구원에서 보유하고 있는 100 MeV 선형가속기를 사용하여 천연텅스텐과의 핵반응으로 부터 발생시켜 발생되는 감마선을 측정하여 natW(p,xn)176Re 핵반응에 대한 상대핵반응단면적을 도출하였다. 일반적으로 반감기가 짧은 동위원소에 대한 연구는 항상 짧은 시간 내에 방사능의 강도가 급격하게 작아지는 경향을 보이기 때문에 측정자체가 매우 어려운 것이 현실이다. 특히 176Re의 경우는 반감기가 5.3 분으로 상대적으로 매우 짧은 방사성핵종 중의 하나이다. 본 연구에서는 이런 짧은 반감기를 가지는 176Re 동위원소로부터 발생되는 109.08 keV 감마선을 고순도 Ge검출기를 이용하여 측정하였다. 얻어진 상대 측정값들은 1967년에 Richard G.에 의해 발표된 8 ~ 14 MeV 양성자에너지 영역에서의 결과와 이를 기반으로 계산에 의한 핵반응단면적에 대한 평가한 2019년 A. J. Koning의 결과인 TENDL-2019값과 비교분석하였다. 이 연구의 결과는 미래의 에너지원으로 알려져 있는 핵융합로의 설계, 천체 물리학, 핵의학 및 양성자치료 분야에 요긴하게 활용될 것으로 생각된다.