• Title/Summary/Keyword: Nuclear Power Plant Structure

Search Result 322, Processing Time 0.024 seconds

A Study on tre Variable Structure Adaptive Control Systems for a Nuclear Power Reactor (가변구조 적응제어이론에 의한 원자로 부하추종 출력제어에 관한 연구)

  • Cheon, Hui-Yeong;Park, Gwi-Tae;Gwon, Seong-Ha;Gwak, Gun-Pyeong
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.92-95
    • /
    • 1984
  • This paper describes a general method for the design of variable structure Model-Following Control systems (VSMFC). This design concept is developed using the theory of variable structure systems and slide mode. The feasibility and the advantages of the method are illustrated by applying it to a 1000 MWe Boiling Water Reactor. The control is studied in the range of 85 - 90 % of rated power for load-following control. A set of 12 nonlinear differential eq. are used to simulate the total plant. A 6th order linear model has been developed from these equations at 85% of rated power. The obtained controller is shown by simulations to be able to compensate for a plant parameter variation over a wide power range.

  • PDF

Deciding the Optimal Shutdown Time Incorporating the Accident Forecasting Model (원자력 발전소 사고 예측 모형과 병합한 최적 운행중지 결정 모형)

  • Yang, Hee Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.171-178
    • /
    • 2018
  • Recently, the continuing operation of nuclear power plants has become a major controversial issue in Korea. Whether to continue to operate nuclear power plants is a matter to be determined considering many factors including social and political factors as well as economic factors. But in this paper we concentrate only on the economic factors to make an optimum decision on operating nuclear power plants. Decisions should be based on forecasts of plant accident risks and large and small accident data from power plants. We outline the structure of a decision model that incorporate accident risks. We formulate to decide whether to shutdown permanently, shutdown temporarily for maintenance, or to operate one period of time and then periodically repeat the analysis and decision process with additional information about new costs and risks. The forecasting model to predict nuclear power plant accidents is incorporated for an improved decision making. First, we build a one-period decision model and extend this theory to a multi-period model. In this paper we utilize influence diagrams as well as decision trees for modeling. And bayesian statistical approach is utilized. Many of the parameter values in this model may be set fairly subjective by decision makers. Once the parameter values have been determined, the model will be able to present the optimal decision according to that value.

Development of Seismic Stability Evaluation Technology for Rock Foundation of Nuclear Power Plant (원전 기초지반의 내진안정성 평가절차 개발)

  • Hwang, Seong-Chun;Jang, Jung-Bum;Lee, Dae-Su;Kim, Yun-Chil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.74-81
    • /
    • 2005
  • The purpose of this study is to suggest a proper analysis model that can evaluate seismic stability for local rock foundation of nuclear power plant. Sliding Analysis, Pseudo-static Analysis and Danamic Analysis methods are used for analysing NPP rock foundation with the conditions like acting directions of input earthquake, boundary conditions, width and depth of analysing model, and modeling methods of weakness fault zones. As the results of study, Pseudo-static Analysis for lateral roller and dynamic analysis for transfer boundary condition showed good results, and analysing ranges of width and depth were 5 times of structure width and over 2 times of structure depth.

  • PDF

A Passively Growing Sheath for Reducing Friction of Linearly Moving Structures (리니어 구동 구조의 마찰 저감을 위한 수동형 성장 피복)

  • Seo, Hanbeom;Kim, Dongki;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.159-163
    • /
    • 2022
  • A linearly moving structure in the area where the friction force is dominant - such as ducts filled with grease in the nuclear power plant - experiences increase in friction since the contact surface gets larger as the structure proceeds. To solve this problem is critical for the pipe inspection robot to investigate further area and this makes the system more energy-efficient. In this paper, we propose a passively growing sheath that can be added to linearly moving structures using zipper mechanism. The mechanism enables the linearly moving structures to maintain rolling contact condition against external environment, which provides substantial reduction in kinetic friction. To analyze the effect of the mechanism's head shape, we establish a physical model and compare to the experimental results. Finally, we have shown that the passively growing sheath can be successfully applied to the pipe inspection robot for the nuclear power plant.

Design of Fault Tolerant Control System for Steam Generator Using Fuzzy Logic

  • Kim, Myung-Ki;Seo, Mi-Ro
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.321-328
    • /
    • 1998
  • A controller and sensor fault tolerant system jot a steam generator is designed with fuzzy logic. A structure of the : proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controlled and a sensor induced performances to identify Which Part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a charge in error of the system output an chosen as fuzzy variables. The fuzzy logic jot a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency, Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the : proposed fault tolerant control scheme jot a steam generator regulates welt water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even mote.

  • PDF

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.