• Title/Summary/Keyword: Nuclear Power Plant Monitoring

Search Result 257, Processing Time 0.028 seconds

Model-based localization and mass-estimation methodology of metallic loose parts

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Munsung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.846-855
    • /
    • 2020
  • A loose part monitoring system is used to detect unexpected loose parts in a reactor coolant system in a nuclear power plant. It is still necessary to develop a new methodology for the localization and mass estimation of loose parts owing to the high estimation error of conventional methods. In addition, model-based diagnostics recently emphasized the importance of a model describing the behavior of a mechanical system or component. The purpose of this study is to propose a new localization and mass-estimation method based on finite element analysis (FEA) and optimization technique. First, an FEA model to simulate the propagation behavior of the bending wave generated by a metal sphere impact is validated by performing an impact test and a corresponding FEA and optimization for a downsized steam-generator structure. Second, a novel methodology based on FEA and optimization technique was proposed to estimate the impact location and mass of a loose part at the same time. The usefulness of the methodology was then validated through a series of FEAs and some blind tests. A new feature vector, the cross-correlation function, was also proposed to predict the impact location and mass of a loose part, and its usefulness was then validated. It is expected that the proposed methodology can be utilized in model-based diagnostics for the estimation of impact parameters such as the mass, velocity, and impact location of a loose part. In addition, the FEA-based model can be used to optimize the sensor position to improve the collected data quality in the site of nuclear power plants.

Conceptualizing Safety Systems Human Performance improvement using Augmented Reality

  • Murungi, Mwongeera;Jung, JaeCheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2016
  • The system performance of Engineered Safety Features is of utmost importance in a nuclear power plant. The human performance is identified as most critical to assurance of the optimal operability of safety systems during an emergency. The aim of this study is to determine how the performance of safety system could be evaluated using Augmented Reality technology. The paper presents a description of how a systems engineered approach could be used to develop the necessary operating conditions needed to conduct this measurement. Augmented Virtual Reality (AVR) interface technology is achieving ease of availability and widespread use in many applications today as illustrated by the launch of several AR and VR devices aimed at media consumption. As such, environments that incorporate such AVR hardware have become invaluable tools in designing human interface systems because of the high fidelity and intuitive response to natural human interaction that can be achieved [2]. The outcome of the measurement undertaken is to determine whether 1.) Operator(s) performance can be enhanced by introducing an improved cognitive method of monitoring plant information during an Emergency Operating Procedures (EOP) and 2.) In correlation, inform the performance of the diverse safety systems on the basis of human factors.

Mass Interception Fractions and Weathering Half-lives of Iodine-131 and Radiocesium in Leafy Vegetables Observed after the Fukushima Daiichi Nuclear Power Plant Accident

  • Tagami, Keiko;Uchida, Shigeo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.178-183
    • /
    • 2021
  • Background: This study was carried out to provide environmental transfer parameter values to estimate activity concentrations of these radionuclides in agricultural crops when direct contamination occurred. Materials and Methods: Mass interception fractions (FBs) and weathering half-lives (Tws) of 131I and radiocesium were calculated using openly available monitoring data obtained after the Fukushima Daiichi Nuclear Power Plant accident. FB is the ratio between the initial radioactivity concentration of a radionuclide retained by the edible part of the plant (Bq·kg-1 fresh weight [FW]) and the amount of deposited radionuclide in that area (Bq·m-2). Tw values can be calculated using activity concentrations of crops decreased with time after the initial contamination. Results and Discussion: Calculated FB and Tw values for 131I and radiocesium were mostly obtained for leafy vegetables. The analytical results showed that there was no difference of FBs between 131I and radiocesium by t-test; geometric mean values for leafy vegetables cultivated under outdoor conditions were 0.058 and 0.12 m2·kg-1 FW, respectively. Geometric mean Tw value of 131I in leafy vegetables grown under outdoor conditions was 8.6 days, and that of radiocesium was 6.6 days; there was no significant difference between Tw values of these radionuclides by Wilcoxon rank sum test. Conclusion: There was no difference between 131I and radiocesium for FBs and Tws. By using these factors, we would be able to carry out a rough estimation of the activity concentrations of 131I and radiocesium in the edible part of leafy crops when a nuclear accident occurred.

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network (원전 금속파편시스템에 신경회로망 적용연구)

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.227-230
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect, locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal, Rising time, Half period, and Global time, they are used as the inputs to neural network. Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising Time, Half Period, Maximum amplitude. The result showed that the neural network would be applied to LPMS. Also, applying the neural network to the Practical false alarm data during startup and impact test signal at nuclear power Plant, the false alarms are reduced effectively. 1.

  • PDF

A Study on the Application of SE Approach to the Design of Health Monitoring Pilot Platform utilizing Big Data in the Nuclear Power Plant (NPP) (원전 상태 감시 및 조기 경보용 빅데이터 시범 플랫폼의 설계를 위한 시스템 엔지니어링 방법론 적용 연구)

  • Cha, Jae-Min;Shin, Junguk;Son, Choong-Yeon;Hwang, Dong-Sik;Yeom, Choong Sub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.13-29
    • /
    • 2015
  • With the era of big data, the big data has been expected to have a large impact in the NPP safety areas. Although high interests of the big data for the NPP safety, only a limited researches concerning this issue are revealed. Especially, researches on the logical/physical structure and systematic design methods for the big data platform for the NPP safety were not dealt with. In this research, we design a new big data pilot platform for the NPP safety especially focusing on health monitoring and early warning services. For this, we propose a tailored design process based on SE approaches to manage inherent high complexities of the platform design. The proposed design process is consist of several steps from elicitate stakeholders to integration test via define operational concept and scenarios, and system requirements, design a conceptual functional architecture, select alternative physical modules for the derived functions and assess the applicability of the alternative modules, design a conceptual physical architecture, implement and integrate the physical modules. From the design process, this paper covers until the conceptual physical architecture design. In the following paper, the rest of the design process and results of the field test will be shown.

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

Analysis and Evaluation Study on Diesel Generator Engine Operation Signature (디젤발전기 엔진 운전상태 분석 및 평가방법에 대한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.82-88
    • /
    • 2009
  • The purpose of this paper is to provide technical background, techniques and actual diesel engine signature analysis evaluation result. Engine signature analysis(ESA) is a process for monitoring the material condition of diesel engine using external sensors, eliminating the need to periodically disassemble the engine. ESA is also used to balanced the engine. Engine balancing is the process of tuning the engine so that all cylinders carry equal load. ESA is a useful tool to non-intrusively determine the operability and performance and assessment of the material condition of internal component of a diesel engine.

  • PDF

Study on Development of Marine Environment Monitoring Sensor System (해양환경 모니터링 센서 시스템 개발에 관한 연구)

  • Yun, Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.211-212
    • /
    • 2019
  • Since nuclear power plant accident has occurred in Fukushima, marine pollution problem has been a hot issue due to discharging of contaminated water This paper deals in the marine environment monitoring sensor system. In this paper, we study on sensor and communication system to observe the various source of maritime pollution in realtime and transmit the measured date to observation center.

  • PDF

AN ANALYSIS OF TECHNICAL SECURITY CONTROL REQUIREMENTS FOR DIGITAL I&C SYSTEMS IN NUCLEAR POWER PLANTS

  • Song, Jae-Gu;Lee, Jung-Woon;Park, Gee-Yong;Kwon, Kee-Choon;Lee, Dong-Young;Lee, Cheol-Kwon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.637-652
    • /
    • 2013
  • Instrumentation and control systems in nuclear power plants have been digitalized for the purpose of maintenance and precise operation. This digitalization, however, brings out issues related to cyber security. In the most recent past, international standard organizations, regulatory institutes, and research institutes have performed a number of studies addressing these systems cyber security.. In order to provide information helpful to the system designers in their application of cyber security for the systems, this paper presents methods and considerations to define attack vectors in a target system, to review and select the requirements in the Regulatory Guide 5.71, and to integrate the results to identify applicable technical security control requirements. In this study, attack vectors are analyzed through the vulnerability analyses and penetration tests with a simplified safety system, and the elements of critical digital assets acting as attack vectors are identified. Among the security control requirements listed in Appendices B and C to Regulatory Guide 5.71, those that should be implemented into the systems are selected and classified in groups of technical security control requirements using the results of the attack vector analysis. For the attack vector elements of critical digital assets, all the technical security control requirements are evaluated to determine whether they are applicable and effective, and considerations in this evaluation are also discussed. The technical security control requirements in three important categories of access control, monitoring and logging, and encryption are derived and grouped according to the elements of attack vectors as results for the sample safety system.

Development and Evaluation of a Mobile Environmental Radiation Measurement System That Can Switch between Low and High Dose Measurement Sections (저선량과 고선량 측정구간 변환이 가능한 모바일 방사선 측정시스템 개발 및 평가)

  • Lee, Hong-Yeon;Han, Sang-Jun;Kim, Bo-Gil;Lee, Geon-Ju;Kim, Seok-Hyeon;Kim, Jeong-Hun
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • This study is to develop a mobile type environmental radiation measurement system for emergency response or environmental radiation monitoring of local governments near nuclear facilities. A mobile radiation measurement system can monitor radiation by field beyond the spatial constraints of a fixed environmental radiation monitor. If installed in local government infrastructure such as public transportation, environmental radiation can be monitored without additional manpower and measurement work. In addition, it is designed to enable monitoring and measurement of radiation from low to high doses as well as the environment in preparation for radioactive disasters such as nuclear power plant accidents. It is expected that this system will be utilized not only in normal times but also in the event of a radiation accident to improve the disaster prevention capabilities of local governments.