• 제목/요약/키워드: Nuclear Power Plant I&C Systems

검색결과 42건 처리시간 0.024초

원자력발전소 운전원의 오류모드 예측 (Prediction of Plant Operator Error Mode)

  • Lee, H.C.;E. Hollnagel;M. Kaarstad
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 춘계학술대회논문집
    • /
    • pp.56-60
    • /
    • 1997
  • The study of human erroneous actions has traditionally taken place along two different lines of approach. One has been concerned with finding and explaining the causes of erroneous actions, such as studies in the psychology of "error". The other has been concerned with the qualitative and quantitative prediction of possible erroneous actions, exemplified by the field of human reliability analysis (HRA). Another distinction is also that the former approach has been dominated by an academic point of view, hence emphasising theories, models, and experiments, while the latter has been of a more pragmatic nature, hence putting greater emphasis on data and methods. We have been developing a method to make predictions about error modes. The input to the method is a detailed task description of a set of scenarios for an experiment. This description is then analysed to characterise thd nature of the individual task steps, as well as the conditions under which they must be carried out. The task steps are expressed in terms of a predefined set of cognitive activity types. Following that each task step is examined in terms of a systematic classification of possible error modes and the likely error modes are identified. This effectively constitutes a qualitative analysis of the possibilities for erroneous action in a given task. In order to evaluate the accuracy of the predictions, the data from a large scale experiment were analysed. The experiment used the full-scale nuclear power plant simulator in the Halden Man-Machine Systems Laboratory (HAMMLAB) and used six crews of systematic performance observations by experts using a pre-defined task description, as well as audio and video recordings. The purpose of the analysis was to determine how well the predictions matiched the actually observed performance failures. The results indicated a very acceptable rate of accuracy. The emphasis in this experiment has been to develop a practical method for qualitative performance prediction, i.e., a method that did not require too many resources or specialised human factors knowledge. If such methods are to become practical tools, it is important that they are valid, reliable, and robust.

  • PDF

액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구 (A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion)

  • 김경훈;조연수;황경모
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.