• Title/Summary/Keyword: Nuclear Power Generation

Search Result 579, Processing Time 0.025 seconds

Heat balance analysis for process heat and hydrogen generation in VHTR (공정열 및 수소생산을 위한 초고온가스로 열평형 분석)

  • Park, Soyoung;Heo, Gyunyoung;Yoo, YeonJae;Lee, SangIL
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.85-92
    • /
    • 2016
  • Since the power density of the VHTR(Very High Temperature Reactor) is lower, there is less possibility of core melt. VHTR has no risk of explosion caused by hydrogen generation when the loss of coolant accident occurs, which is another advantage. Along with safety benefit, it can be used as a process heat supplier near demand facilities because coolant temperature is very high enough to be used for industrial purpose. In this paper, we designed the primary system using VHTR and the secondary system providing electricity and process heat. Based on that 350 MW thermal reactor proposed by NGNP(Next Generation Nuclear Part), we developed conceptual model that the IHX(Intermediate Heat Exchanger) loop transports 300 MW thermal energy to the secondary system. In addition, we analyzed thermodynamic behavior and performed the efficiency analysis and optimization study depending on major parameters.

Energy Transition Policy and Social Costs of Power Generation in South Korea (에너지 전환정책과 발전의 사회적 비용 -제7차와 제8차 전력수급기본계획 비교-)

  • Kim, Kwang In;Kim, Hyunsook;Cho, In-Koo
    • Environmental and Resource Economics Review
    • /
    • v.28 no.1
    • /
    • pp.147-176
    • /
    • 2019
  • This paper uses research on the Levelized Cost of Electricity (LCOE) in South Korea to conduct a simulation analysis on the impact of nuclear power dependency and usage rates on the social costs of power generation. We compare the $7^{th}$ basic plan for long-term electricity supply and demand, which was designed to increase nuclear power generation, to the $8^{th}$ basic plan for long-term electricity supply and demand that decreased nuclear power generation and increased renewable energy generation in order to estimate changes in social costs and electricity rates according to the power generation mix. Our environmental generation mix simulation results indicate that social costs may increase by 22% within 10 years while direct generation cost and electricity rates based on generation and other production costs may increase by as much as 22% and 18%, respectively. Thus we confirm that the power generation mix from the $8^{th}$ basic plan for long-term electricity supply and demand compared to the $7^{th}$ plan increases social costs of generation, which include environmental external costs.

A Study on the Applicability of MELCOR to Molten Core-Concrete Interaction Under Severe Accidents

  • Kim, Ju-Youl;Chung, Chang-Hyun;Lee, Byung-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.425-432
    • /
    • 2000
  • It has been an essential part for the safety assessment of nuclear power plants to understand various phenomena associated with the molten core-concrete interaction(MCCI) under severe accidents. In this study, the severe accident analysis code MELCOR was used to simulate the MCCI experiments such as SWISS and SURC test series which had been performed in Sandia National Laboratories(SNL). The calculation results were compared with corresponding experimental data such as melt temperature, concrete ablation distance, gas generation rate, and aerosol release rate. Good agreements were observed between MELCOR calculation and experimental data. The melt pool was sustained within the range of high temperature and the concrete ablation occurred continuously. The gas generation and aerosol release were under the influence of melt temperature and overlying water pool, respectively.

  • PDF

Applicability of HRA to Support Advanced MMI Design Review

  • Kim, Inn-Seock
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.88-98
    • /
    • 2000
  • More than half of all incidents in large complex technological systems, particularly in nuclear power or aviation industries, were attributable in some way to human erroneous actions. These incidents were largely due to the human engineering deficiencies of man-machine interface (MMI). In nuclear industry, advanced computer-based MMI designs are emerging as part of new reactor designs. The impact of advanced MMI technology on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in nuclear power plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e., ATHEANA and CREAM, with the potential to assist the design review process.

  • PDF

MANAGING SPENT NUCLEAR FUEL FROM NONPROLIFERATION, SECURITY AND ENVIRONMENTAL PERSPECTIVES

  • Choi, Jor-Shan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.231-236
    • /
    • 2010
  • The growth in global energy demand and the increased recognition of the impacts of carbon dioxide emissions from fossil fuel plants have aroused a renewed interest on nuclear energy. Many countries are looking afresh at building more nuclear power stations to deal with the twin problems of global warming and the need for more generating capacity. Many in the nuclear community are also anticipating a significant growth of new nuclear generation in the coming decades. If there is a nuclear renaissance, will the expansion of nuclear power be compatible with global non-proliferation and security? or will it add to the environmental burden from the large inventory of spent nuclear fuel already produced in existing nuclear power reactors? We learn from past peaceful nuclear activities that significant concerns associated with nuclear proliferation and spent-fuel management have resulted in a decrease in public acceptance for nuclear power in many countries. The terrorist attack in the United States (US) on September 11, 2001 also raised concern for security and worry that nuclear materials may fall into the wrong hands. As we increase the use of nuclear power, we must simultaneously reduce the proliferation, security and environmental risks in managing spent-fuel below where they are today.

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library

  • Kui Hu;Xubo Ma;Teng Zhang;Xuan Ma;Zifeng Huang;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2785-2796
    • /
    • 2023
  • How to generate the precise broad group cross section is important for the fast reactor design. In this study, a fast reactor multi-group cross-section generation code MGGC2.0 are developed in-house for processing ultrafine group MATXS format library. Validation and verification are performed for MGGC2.0 code by applying the benchmarks of ICSBEP handbook, and the results of MGGC2.0 agree well with that of MCNP. The consistent PN method with critical buckling search is in good agreement that condensed with TWODANT flux and flux moment for the inner core and outer core region. For the radial blanket and reflector, two region approximation method has been applied in MGGC2.0 by using collision Probability Method neutron flux solver. The RBEC-M benchmark was used to verify the power distribution calculation, and the relative error of power distribution comparison with the reference are less than 0.8% in the fuel region and the maximum relative error is 5.58% in the reflector region. Therefore, the precise broad cross section can be generated by MGGC2.0 for fast reactor.

A Study on Convergence Security of Power Generation Control System (발전 제어시스템의 융합보안 연구)

  • Lee, Daesung
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.93-98
    • /
    • 2018
  • Korea Hydro & Nuclear Power Co., Ltd., Korea Electric Power Corporation, and Korea South-East Power Corporation are major infrastructure facilities of power supplying countries. If a malicious hacking attack occurs, the damage is beyond the imagination. In fact, Korea Hydro & Nuclear Power has been subjected to a hacking attack, causing internal information to leak and causing social big problems. In this paper, we propose a strategy and countermeasures for stabilization of various power generation control systems by analyzing the environment and the current status of power generation control system for convergence security research, which is becoming a hot issue. We propose a method to normalize and integrate data types from various physical security systems (facilities), IT security systems, access control systems, to control the whole system through convergence authentication, and to detect risks through fusion control.

  • PDF

Current Status of Korean Nuclear Industry and Major Policy Issues for Nuclear Development (한국원자력 산업의 현황과 원자력 개발을 위한 주요 정책상의 문제점)

  • Moon-Hyun Chun;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.200-210
    • /
    • 1985
  • A brief overview of the current status of Korean nuclear power development is first presented. The necessity of nuclear energy in Korea is then clarified. After presentation of these overview, the major issues of the Korean nuclear industry, such as the major obstacles for nuclear power development and the most weak areas of the Korean nuclear industry, are identified and discussed. Finally, as a conclusion, actions to be taken by the government and the nuclear industry in conjunction with increased nuclear power generation in Korea are presented.

  • PDF