• 제목/요약/키워드: Nuclear Hydrogen System

검색결과 155건 처리시간 0.024초

초고온가스로를 이용한 원자력수소생산 기술개발 (Nuclear Hydrogen Production Technology Development Using Very High Temperature Reactor)

  • 김용완;김응선;이기영;김민환
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.299-305
    • /
    • 2015
  • 미래에너지의 해법으로 원자력에너지를 이용한 물분해 수소생산시스템의 핵심기술을 개발하였다. 안전성을 보장할 수 있는 제4세대 원자로인 초고온가스로의 고열을 이용하여 황요오드 열화학적인 방법으로 물을 분해하여 수소를 생산하는 기술이다. 원자력수소생산 핵심기술은 초고온에서의 열을 공급하는 것을 모사하는 초고온 실험기술, 초고온가스로의 안전성을 모사하는 연구, 초고온가스로의 노심과 안전성을 해석할 수 있는 도구의 개발, 초고온가스로에 사용하는 연료제조기술, 물을 분해하여 열화학적인 방법으로 수소를 생산하는 기술로 구성된다. 원자력수소생산에 필요한 핵심기술을 개발하고 실험실 규모로 입증하였으며, 대규모 실용화를 위해서 선결되어할 미완성 기술을 제시하였다. 본 기술은 제4세대 원자로개발 국제공동연구로 수행한 기술로서 향후 미래의 원자로 기술이다.

Investigation of a Hydrogen Mitigation System During Large Break Loss-Of-Coolant Accident for a Two-Loop Pressurized Water Reactor

  • Dehjourian, Mehdi;Sayareh, Reza;Rahgoshay, Mohammad;Jahanfarnia, Gholamreza;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1174-1183
    • /
    • 2016
  • Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

원자력수소 연구개발과제의 품질보증 적용 사례 연구 (A Case Study on Quality Assurance Application of the Nuclear Hydrogen R&D)

  • 이태훈;이기영
    • 산업경영시스템학회지
    • /
    • 제33권4호
    • /
    • pp.114-121
    • /
    • 2010
  • Traditionally Nuclear Research and Development (R&D) result has been big influence on other industries and societies and it requires large scale investments and study period. So it is essential to apply Quality Assurance (QA) for systematic R&D management. This paper investigates QA System for U.S. Nuclear R&D and reviews QA elements. Based on this investigation, we applied QA requirements to Nuclear Hydrogen R&D project, and the scope of application be enlarged as R&D stage in progress. We also present QA system improvement way through consideration for Nuclear Hydrogen Project's QA application. As the need for QA in R&D is expected to increase in the future, it is necessary to prepare guidelines for R&D QA.

고온전기분해 이용 원자력수소 예비타당성 연구 (Preliminary Cost Estimates for Nuclear Hydrogen System Based on High Temperature Electrolysis)

  • 양경진;이태훈;이기영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2010
  • In this work, the hydrogen production costs of the nuclear energy sources are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTE process with Very High Temperature nuclear Reactor (VHTR) as a thermal energy source rather than the LUEC (Levelized Unit Electricity Cost). The general ground rules and assumptions follow G4-ECONS. Through a preliminary study of cost estimates, we wished to evaluate the economic potential for hydrogen produced from nuclear energy, and, in addition, to promptly estimate the hydrogen production costs for an updated input data for capital costs. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.

  • PDF

초고온가스로 연계 블루수소 생산 공정의 열역학적 분석 (Preliminary Thermodynamic Evaluation of a Very High Temperature Reactor (VHTR) Integrated Blue Hydrogen Production Process)

  • 손성민
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.267-273
    • /
    • 2023
  • As the impacts of global climate change become increasingly apparent, the reduction of carbon emissions has emerged as a critical subject of discussion. Nuclear power has garnered attention as a potential carbon-free energy source; however, the rapidity of load following in nuclear power generation poses challenges in comparison to fossil-fueled methods. Consequently, power-to-gas systems, which integrate nuclear power and hydrogen, have attracted growing interest. This study presents a preliminary design of a very high temperature reactor (VHTR) integrated blue hydrogen production process utilizing DWSIM, an open-source process simulator. The blue hydrogen production process is estimated to supply the necessary calorific value for carbon capture through tail gas combustion heat. Moreover, a thermodynamic assessment of the main recuperator is performed as a function of the helium flow rate from the VHTR system to the blue hydrogen production system.

수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산 (Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor)

  • 송기남;김용완
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

원자로수소생산을 위한 연결부품 실험용 소형 컴팩트 실험장치 개발 (Development of a Compact Nuclear Hydrogen Coupled Components Test Loop)

  • 홍성덕;김종호;김찬수;김용완;이원재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2850-2855
    • /
    • 2008
  • Very High Temperature Reactor (VHTR) has been selected as a high energy heat source for a nuclear hydrogen generation. The VHTR heat is transferred to a thermo-chemical hydrogen production process through an intermediate loop. Both Process Heat Exchanger and sulfuric acid evaporator provide the coupled components between the VHTR intermediate loop and hydrogen production module. A small scaled Compact Nuclear Hydrogen Coupled Components test loop is developed to simulate the VHTR intermediate loop and hydrogen production module. Main objective of the loop is to screening the candidates of NHDD (Nuclear Hydrogen Development and Demonstration) coupled components. The operating condition of the gas loop is a temperature up to $950^{\circ}C$ and a pressure up to 6.0MPa. The thermal and fluid dynamic design of the loop is dependent on the structures that enclose the gas flow, especially primary side that has fast gas velocity. We designed and constructed a small scale sulfuric acid experimental system which can simulate a part of the hydrogen production module also.

  • PDF

TWO-DIMENSIONAL SIMULATION OF HYDROGEN IODIDE DECOMPOSITION REACTION USING FLUENT CODE FOR HYDROGEN PRODUCTION USING NUCLEAR TECHNOLOGY

  • CHOI, JUNG-SIK;SHIN, YOUNG-JOON;LEE, KI-YOUNG;CHOI, JAE-HYUK
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.424-433
    • /
    • 2015
  • The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of $H_2O$ was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.