• 제목/요약/키워드: Nuclear Hydrogen Generation

검색결과 80건 처리시간 0.027초

수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산 (Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor)

  • 송기남;김용완
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

Small Nuclear Units에 의한 분산전원 및 계통연계(2) (Small Nuclear Units and Distributed Resource interconnection(2))

  • 이상성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.420-422
    • /
    • 2005
  • This paper introduces a new paradigm for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation.

  • PDF

공정열 및 수소생산을 위한 초고온가스로 열평형 분석 (Heat balance analysis for process heat and hydrogen generation in VHTR)

  • 박소영;허균영;유연재;이상일
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2016
  • 초고온가스로는 열출력 밀도가 낮아 노심용융의 가능성이 낮으며, 냉각재 상실사고 시 수소 발생 등으로 인한 폭발의 위험도 없다. 안전성 측면의 장점과 더불어 냉각재를 초고온으로 만들어 전력생산이외에 산업시설용 공정열로의 응용도 가능하다. 본 논문에서는 초고온가스로를 일차계통으로 하고, 전력 및 공정열 공급이 가능한 이차계통의 개념 설계를 담고 있다. 기존에 NGNP(Next Generation Nuclear Part)에서 제안한 350 MW 열출력 원자로 모델을 기반으로 수소생산 루프와는 별도로 전력생산을 위한 300 MW의 열에너지를 중간열교환기를 통해 이차계통으로 전달하는 참조모델을 개발하고, 이를 열역학적 측면에서 분석하였으며 이차계통 각 지점에서 주요 설계변수에 따른 효율분석과 최적화개념 연구를 수행하였다.

초고온가스로 연계 블루수소 생산 공정의 열역학적 분석 (Preliminary Thermodynamic Evaluation of a Very High Temperature Reactor (VHTR) Integrated Blue Hydrogen Production Process)

  • 손성민
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.267-273
    • /
    • 2023
  • As the impacts of global climate change become increasingly apparent, the reduction of carbon emissions has emerged as a critical subject of discussion. Nuclear power has garnered attention as a potential carbon-free energy source; however, the rapidity of load following in nuclear power generation poses challenges in comparison to fossil-fueled methods. Consequently, power-to-gas systems, which integrate nuclear power and hydrogen, have attracted growing interest. This study presents a preliminary design of a very high temperature reactor (VHTR) integrated blue hydrogen production process utilizing DWSIM, an open-source process simulator. The blue hydrogen production process is estimated to supply the necessary calorific value for carbon capture through tail gas combustion heat. Moreover, a thermodynamic assessment of the main recuperator is performed as a function of the helium flow rate from the VHTR system to the blue hydrogen production system.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Development of a Mechanistic Model for Hydrogen Generation in Fuel-Coolant Interactions

  • Lee, Byung-Chul;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.99-109
    • /
    • 1997
  • A dynamic model for hydrogen generation by Fuel-Coolant Interactions(FCI) is developed with separate models for each FCI stage, coarse mixing and stratification. The model includes the physical concept of FCI, semi-empirical heat and mass transfer correlation and the concentration diffusion equation with the general non-zero boundary condition. The calculated amount of hydrogen, which is mainly generated in stratification, is compared with the FITS experiments. The model developed in this study shows a good agreement within a range of 10 % fuel oxidation rate and predicts the controlled mechanism of the chemical reaction very well. And this model predicts more accurately than the previous works. It is shown from the sensitivity study that the higher initial temperature of fuel particle is, the larger the reaction rate is. Up to 2700 K of temperature of the particle, the reaction rate increases rapid, which can lead to metal ignition.

  • PDF

Sol-Gel법을 이용한 구형 UO2 Kernel 제조에 관한 기초연구 (A Basic Study on Spherical UO2 Kernel Preparation Using the Sol-Gel Method)

  • 김연구;정경채;오승철;조문성;나상호;이영우;장종화
    • 한국세라믹학회지
    • /
    • 제42권9호
    • /
    • pp.618-623
    • /
    • 2005
  • HTGR (High Temperature Gas-Cooled Reactor) is highlighted to next generation power plant for producing the clean hydrogen gas. In this study, the spherical $UO_2$ kernel via $UO_3$ gel particles was prepared by the sol-gel process. Raw material of slightly Acid Deficient Uranyl Nitrate (ADUN) solution, which has pH = 1.10 and $[NO_3]/[U]$ mole ratio = 1.93, was obtained from dissolution of $U_3O_8$ powder with conc.-$HNO_3$. The surface of these spherical $UO_3$ gel particles, which was prepared from the broth solution, consisted of 1 M-uranium, 1 M-HMTA, and urea, were covered with the fine crystallite aggregates, and these particles were so hard that crushed well. But the other $UO_3$ gel particles prepared with the broth solution, consisted of 2 M-uranium, 2 M-HMTA, and urea, have soft surface characteristics and an amorphous phase. This type of $UO_3$ gel particles is some chance of doing possibility of high density from the compaction. The amorphous $UO_3$ gel particles was converted to $U_3O_8$ and then $UO_2$ by calcination at $600^{\circ}C\;in\;4\%\;-\;H_2\;+\;N2$ atmosphere.

저출력 및 고출력 SOEC 시스템의 경제성 분석 비교 (Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems)

  • 뚜안앵;김영상;이동근;안국영;배용균;이상민
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.707-714
    • /
    • 2022
  • Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

원자력 발전소의 해수전해설비 폐수소를 활용한 PEM 연료전지 발전 시스템에 관한 연구 (A study on the power plant system combined with PEM fuel cell and the wasted hydrogen from the sea water electrolyzer of nuclear power plants)

  • 최종원;이주형;차석원;김민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.124.2-124.2
    • /
    • 2010
  • Generally, a coolant of the nuclear power plant is manufactured by electrolyzing the sea water near the plant for making the sodium hypochlorite(NaOCl), which is used for sterilizing the bacteria and the shellfishes sticking to the drains or the pumps at the outlet of the cooling system due to $8-10^{\circ}C$ warmer temperature than the inlet sea water. During manufacturing the sodium hypochlorite, the hydrogen with the high purity is also produced at the anode side of the electrolyzer. This paper describes a novel power plant system combined with the polymer electrolyte membrane(PEM) fuel cell, the wasted hydrogen from the sea water electrolyzer and the wasted heat of the nuclear power plant. The present status over the exhausted hydrogen at twenty nuclear power plants in Korea was investigated in this study, from which an available power generation is estimated. Furthermore, the economic feasibility of the PEM fuel cell power plant is also evaluated by a current regulations over the power production and exchange using a renewable energy shown in Korea Power Exchange(KRX).

  • PDF

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.