• 제목/요약/키워드: Nuclear Fuel bundle

검색결과 127건 처리시간 0.024초

CANDU 개량 핵연료 설계 방안 분석 (Technical and Economic Evaluations of CANDU Advanced Fuel Bundle Designs)

  • 석호천;황완;박주환;김봉구;심기섭;정창준;허영호;전지수
    • Nuclear Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.389-409
    • /
    • 1990
  • CANDU 개량 핵연료집합체의 대표적인 방안들로서 CANDU-KF39(39개, 이원봉), CANDU-KF40(40개, 이원봉) 및 CANDU-KF43(43개, 이원봉) 핵연료집합체들을 설정하여 월성 1호기 CANDU-6 원자로 가동조건에 따라 분석/평가하였다. 본 분석 결과에 의하면, 본 개량 핵연료집합체들은 기존 37개 핵연료봉 집합체보다 기술 및 경제적으로 우수하며, 특히 CANDU-KF39 개량핵연료집합체는 CANDU-KF40 및 CANDU-KF43 개량 핵연료집합체 보다 월성 1호기 안전성, 기술성, 및 경제성 향상의 모든 조건에 제일 충족될 것으로 예상된다.

  • PDF

원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진 (Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles)

  • 전건호;박종석;최영돈
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

Fluidelastic instability of a curved tube array in single phase cross flow

  • Kang-Hee Lee;Heung-Seok Kang;Du-Ho Hong;Jong-In Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1118-1124
    • /
    • 2023
  • Experimental study on the fluidelastic instability (FEI) of a curved tube bundle in single phase downward cross flow is investigated for the design qualification and analysis input preparation of helical coiled steam generator tubing. A 6×9 normal square curved tube array with equal and different vertical/horizontal pitch-to-diameter ratio was under-tested up to 6 m/s in term of gap flow velocity to measure the critical velocity for FEI. The critical velocity for FEI was measured at the turning point from the vibration amplitude plot along the gap flow velocity. Our test results were compared with straight tube results and published data in the design guideline. The applicability of the current design guidelines to a curved tube bundle is also assessed. We found that introducing frequency difference in a curved tube array increases the critical velocity for fluidelastic instability.

Single and Two-Phase Flow Pressure Drop for CANFLEX Bundle

  • Park, Joo-Hwan;Jun, Ji-Sun;Suk, Ho-Chun;Dimmick, G.R.;Bullock, D.E.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.532-537
    • /
    • 1998
  • Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-l34a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLRX bundle is found to be about 20 % higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within ${\pm}\;5\;%$ error.

  • PDF

Pin Power Distribution Determined by Analyzing the Rotational Gamma Scanning Data of HANARO Fuel Bundle

  • Lee, Jae-Yun;Park, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.452-461
    • /
    • 1998
  • The pin power distribution is determined by analyzing the rotational gamma scanning data for 36 element fuel bundle of HANARO. A fission monitor of Nb$^{95}$ is chosen by considering the criteria of the half-life, fission yield, emitting ${\gamma}$-ray energy and probability. The ${\gamma}$-ray spectra were measured in Korea Atomic Energy Research Institute(KAERI) by using a HPGe detector and by rotating the fuel bundle at steps of 10$^{\circ}$. The counting rates of Nb$^{95}$ 766 keV ${\gamma}$-rays are determined by analyzing the full absorption peak in the spectra. A 36$\times$36 response matrix is obtained from calculating the contribution of each rod at every scanning angle by assuming 2-dimensional and parallel beam approximations for the measuring geometry. In terms of the measured counting rates and the calculated response matrix, an inverse problem is set up for the unknown distribution of activity concentrations of pins. To select a suitable solving method, the performances of three direct methods and the iterative least-square method are tested by solving simulation examples. The final solution is obtained by using the iterative least-square method that shows a good stability. The influences of detection error, step size of rotation and the collimator width are discussed on the accuracy of the numerical solution. Hence an improvement in the accuracy of the solution is proposed by reducing the collimator width of the scanning arrangement.

  • PDF

Prediction of Critical Heat Flux in Fuel Assemblies Using a CHF Table Method

  • Chun, Tae-Hyun;Hwang, Dae-Hyun;Bang, Je-Geon;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.534-539
    • /
    • 1997
  • A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor.

  • PDF