• Title/Summary/Keyword: Nuclear Fuel Particle

Search Result 131, Processing Time 0.024 seconds

Development and validation of FRAT code for coated particle fuel failure analysis

  • Jian Li;Ding She;Lei Shi;Jun Sun
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4049-4061
    • /
    • 2022
  • TRISO-coated particle fuel is widely used in high temperature gas cooled reactors and other advanced reactors. The performance of coated fuel particle is one of the fundamental bases of reactor safety. The failure probability of coated fuel particle should be evaluated and determined through suitable fuel performance models and methods during normal and accident condition. In order to better facilitate the design of coated particle fuel, a new TRISO fuel performance code named FRAT (Fission product Release Analysis Tool) was developed. FRAT is designed to calculate internal gas pressure, mechanical stress and failure probability of a coated fuel particle. In this paper, FRAT was introduced and benchmarked against IAEA CRP-6 benchmark cases for coated particle failure analysis. FRAT's results agree well with benchmark values, showing the correctness and satisfactory applicability. This work helps to provide a foundation for the credible application of FRAT.

Geometry Optimization of Dispersed U-Mo Fuel for Light Water Reactors

  • Ondrej Novak;Pavel Suk;Dusan Kobylka;Martin Sevecek
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3464-3471
    • /
    • 2023
  • The Uranium/Molybdenum metallic fuel has been proposed as promising advanced fuel concept especially in the dispersed fuel geometry. The fuel is manufactured in the form of small fuel droplets (particles) placed in a fuel pin covered by a matrix. In addition to fuel particles, the pin contains voids necessary to compensate material swelling and release of fission gases from the fuel particles. When investigating this advanced fuel design, two important questions were raised. Can the dispersed fuel performance be analyzed using homogenization without significant inaccuracy and what size of fuel drops should be used for the fuel design to achieve optimal utilization? To answer, 2D burnup calculations of fuel assemblies with different fuel particle sizes were performed. The analysis was supported by an additional 3D fuel pin calculation with the dispersed fuel particle size variations. The results show a significant difference in the multiplication factor between the homogenized calculation and the detailed calculation with precise fuel particle geometry. The recommended fuel particle size depends on the final burnup to be achieved. As shown in the results, for lower burnup levels, larger fuel drops offer better multiplication factor. However, when higher burnup levels are required, then smaller fuel drops perform better.

MODELING FAILURE MECHANISM OF DESIGNED-TO-FAIL PARTICLE FUEL

  • Wongsawaeng, Doonyapong
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.715-722
    • /
    • 2009
  • A model to predict failure of designed-to-fail (dtf) fuel particles is discussed. The dtf fuel under study consisted of a uranium oxycarbide kernel coated with a single pyrocarbon seal coat. Coating failure was assumed to be due to fission gas recoil and knockout mechanisms and direct diffusive release of fission gas from the kernel, which acted to increase pressure and stress in the pyrocarbon layer until it ruptured. Predictions of dtf fuel failure using General Atomics' particle fuel performance code for HRB-17/18 and HFR-B1 irradiation tests were reasonably accurate; however, the model could not predict the failure for COMEDIE BD-1. This was most likely due to insufficient information on reported particle fuel failure at the beginning.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

핵연료분말 제조에서 반응물질의 변화가 분말의 특성에 미치는 영향 (Powder Characteristics by Change of Reacting Material in Nuclear Fuel Powder Preparation)

  • 정경채;박진호;황성태
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.631-636
    • /
    • 1996
  • The powder characteristics of UO2 via AUC prepared by precipitation from a UN with AC soiution produced from nuclear fuel powder conversion plant and that of the existing facility were compared. Mean particle size of AUC powder was decreased and agglomerates were much occured in case of using the AC solution that that of the gases but other properties such as particle size distribution and shape of particle are thought to be similarly. In compaction of UO2 powder the breaking pressur of agglomerated UO2 powder and the sintered density of final UO2 pellet from AC solution were measured 1.45$\times$108 N/m2 and 10.52 g/cc, These values could be used in nuclear fuel powder fabrication process.

  • PDF

IRRADIATION DEVICE FOR IRRADIATION TESTING OF COATED PARTICLE FUEL AT HANARO

  • Kim, Bong Goo;Park, Sung Jae;Hong, Sung Taek;Lee, Byung Chul;Jeong, Kyung-Chai;Kim, Yeon-Ku;Kim, Woong Ki;Lee, Young Woo;Cho, Moon Sung;Kim, Yong Wan
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.941-950
    • /
    • 2013
  • The Korean Nuclear-Hydrogen Technology Development (NHTD) Plan will be performing irradiation testing of coated particle fuel at HANARO to support the development of VHTR in Korea. This testing will be carried out to demonstrate and qualify TRISO-coated particle fuel for use in VHTR. The testing will be irradiated in an inert gas atmosphere without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The irradiation device is being loaded and irradiated into the OR5 hole of the in HANARO core from August 2013. The device will be operated for about 150 effective full-power days at a peak temperature of about $1030^{\circ}C$ in BOC (Beginning of Cycle) during irradiation testing. After a peak burn-up of about 4 atomic percentage and a peak fast neutron fluence of about $1.7{\times}10^{21}\;n/cm^2$, PIE (Post-Irradiation Examination) of the irradiated coated particle fuel will be performed at IMEF (Irradiated Material Examination Facility). This paper reviews the design of test rod and irradiation device for coated particle fuel, and discusses the technical results for irradiation testing at HANARO.

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-I: Theory and Method

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.650-659
    • /
    • 2016
  • As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.