• Title/Summary/Keyword: Nuclear Fuel Assembly

Search Result 376, Processing Time 0.024 seconds

Axial response of PWR fuel assemblies for earthquake and pipe break excitations

  • Jhung, Myung J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.149-165
    • /
    • 1997
  • A dynamic time-history analysis of the coupled internals and core in the vertical direction is performed as a part of the fuel assembly qualification program. To reflect the interaction between the fuel rods and grid cage, friction element is developed and is implemented. Also derived here is a method to calculate a hydraulic force on the reactor internals due to pipe break. Peak responses are obtained for the excitations induced from earthquake and pipe break. The dynamic responses such as fuel assembly axial forces and lift-off characteristics are investigated.

Preliminary Study for the Reliability Assurance on Results and Procedure of the Out-pile Mechanical Characterization Test for a Fuel Assembly; Lateral Vibration Test(I) (핵연료 집합체 노외성능시험의 절차와 결과에 대한 신뢰성확보를 위한 예비고찰; 횡방향 진동특성시험(I))

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1854-1858
    • /
    • 2007
  • The reliability assurance with respect to the test procedure and results of the out-pile mechanical performance test for the nuclear fuel assembly is an essential task to assure the test quality and to get a permission for fuel loading into the commercial reactor core. For the case of vibration test, which is carried out to obtain basic dynamic characteristics of the fuel assembly, proper management and appropriate calibration of instruments and devices used in the test, various efforts to minimize the possible error during the test and signal acquisition process are needed. Additionally, the deep understanding both of the theoretical assumption and simplification cation for the signal processing/modal analysis and of the functions of the devices used in the test were highly required. Finally, to verify the test result to represent the accurate natural characteristics of the structure, the proper correlation analysis between the theoretical and experimental method has to be carried out. In this study, the overall procedure and result of lateral vibration test for the fuel assembly's mechanical characterization were briefly introduced. A series of measures to assure and improve the reliability of the vibration test were discussed.

  • PDF

Study on Characteristics of Sliding Support for Fuel Rod (이동 가능한 연료봉 지지부의 특성 고찰)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • A spacer grid assembly is one of the most important structural components of the nuclear fuel assembly of a pressurized water reactor (PWR), and it affects the performance of the fuel assembly. The primary design requirement is that the mechanical integrity of the fuel rod should be maintained by the spacer grid assembly during the operation of the reactor. It was known that fretting damage to the fuel rod can be reduced by adjusting the relative moving displacement between the fuel rod and its support. In this study, we used the finite element method to evaluate the characteristics of a sliding support designed to reduce fretting damage of fuel rods.

Evaluation of Effects of Impurities in Nuclear Fuel and Assembly Hardware on Radiation Source Term and Shielding

  • Taekyung Lee;Dongjin Lee;Kwangsoon Choi;Hyeongjoon Yun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.193-204
    • /
    • 2023
  • To ensure radiological safety margin in the transport and storage of spent nuclear fuel, it is crucial to perform source term and shielding analyses in advance from the perspective of conservation. When performing source term analysis on UO2 fuel, which is mostly used in commercial nuclear power plants, uranium and oxygen are basically considered to be the initial materials of the new fuel. However, the presence of impurities in the fuel and structural materials of the fuel assembly may influence the source term and shielding analyses. The impurities could be radioactive materials or the stable materials that are activated by irradiation during reactor power operation. As measuring the impurity concentration levels in the fuel and structural materials can be challenging, publicly available information on impurity concentration levels is used as a reference in this evaluation. To assess the effect of impurities, the results of the source term and shielding analyses were compared depending on whether the assumed impurity concentration is considered. For the shielding analysis, generic cask design data developed by KEPCO-E&C was utilized.

Eigenvalue Design Sensitivity Analysis To Redesign Spacer Grid Location In Nuclear Fuel Assembly (핵연료집합체 지지격자 위치결정을 위한 고유치 민감도해석)

  • 박남규;이성기;김형구;최기성;이준노;김재원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-709
    • /
    • 2002
  • The spacer grids in nuclear fuel assembly locate and align the fuel rods with respect to each other. They provide axial and lateral restraint against an excessive rod motion mainly caused by coolant flow. It is understood that each rod Is supported by multiple spacer grid. In such a case, it is important to determine spacer grid span so as to avoid resonance between the natural frequency of the fuel rods and excitation frequency. Actually dynamic characteristics of the fuel rods can be improved by assigning adequate spacer grid locations. When a dynamic performance of the structure is to be improved, design sensitivity analysis plays an important role as like many structural redesign problems. In this work, a shape design concept, different from conventional design, was applied to the problem. According to the theory shape can be a design parameter and optimal shape design can be found. This study concentrates on eigenvalue design sensitivity of the fuel rod supported by multiple spacer grids to determine optimal spacer grids positions.

  • PDF

Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core

  • Wanninger, Andreas;Seidl, Marcus;Macian-Juan, Rafael
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.297-305
    • /
    • 2018
  • Fuel assembly (FA) bow in pressurized water reactor (PWR) cores is considered to be a complex process with a large number of influencing mechanisms and several unknowns. Uncertainty and sensitivity analyses are a common way to assess the predictability of such complex phenomena. To perform such analyses, a structural model of a row of 15 FAs in the reactor core is implemented with the finite-element code ANSYS Mechanical APDL. The distribution of lateral hydraulic forces within the core row is estimated based on a two-dimensional Computational Fluid Dynamics model with porous media, assuming symmetric or asymmetric core inlet and outlet flow profiles. The influence of the creep rate on the bow amplitude is tested based on different creep models for guide tubes and fuel rods. Different FA initial states are considered: fresh FAs or FAs with higher burnup, which may be initially straight or exhibit an initial bow from previous cycles. The simulation results over one reactor cycle demonstrate that changes in the creep rate and the hydraulic conditions may have a considerable impact on the bow amplitudes and the bow patterns. A good knowledge of the specific creep behavior and the hydraulic conditions is therefore crucial for making reliable predictions.

Impact Analysis of the Spacer Grid Assembly for PWR Fuels(III) (경수로 핵연료 지지격자체의 충격해석(III))

  • Song, Kee-Nam;Lee, S.B.;Lee, H.A.;Kim, J.K.;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.305-308
    • /
    • 2007
  • The spacer grid assembly is one of the main structural components of the nuclear fuel assembly of a PWR. The spacer grid assembly supports and aligns the fuel rods, guides the fuel assemblies past each other during handling and, if needed, sustains lateral seismic loads. The ability of the spacer grid assembly to resist the lateral loads is usually characterized in terms of its dynamic and static crush strengths, which are acquired from tests. In this study, a finite element analysis on the dynamic crush strength of spacer grid assembly specimens is carried out and compared with test results.

  • PDF

A study on development of screen inspection system to detect damages, bowing, and foreign materials of nuclear fuel assembly for reactor in nuclear power plants (원전 연료집합체의 손상, 변형 및 이물질 검사시스템 개발에 관한 연구)

  • Park, Ki-Tae;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3617-3624
    • /
    • 2013
  • Screen inspection system applied vision and laser scan technology which detect foreign materials caused fuel rod to be damaged, and which inspect fuel rod damage, bowing, distortion and grid damages, was developed to secure reliability and reproductivity of inspection method for nuclear fuel assembly during outage. In further, datum of inspection results will be continuously monitored and given understand the pattern of bowing and distorting for fuel assembly in reactor. Understanding of the pattern will be key technical information to avoid grid demage might be happened during refueling outage and provides important data base for safe operation of nuclear power plant in Korea and world wide.