• Title/Summary/Keyword: Nuclear Energy

Search Result 7,792, Processing Time 0.03 seconds

The Analysis of Radiation Exposure of Hospital Radiation Workers (병원 방사선 작업 종사자의 방사선 피폭 분석 현황)

  • Jeong Tae Sik;Shin Byung Chul;Moon Chang Woo;Cho Yeong Duk;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2000
  • Purpose : This investigation was peformed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. Methods and Materials : The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyzed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. Results : The average of yearly radiation exposure of 347 persons was 1.52$\pm$1.35 mSv. Though it was less than 50mSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87$\pm$1.01 mSv/year, mean 1.22$\pm$0.69 mSv between 31 and 40 year old and mean 0.97$\pm$0.43 mSv/year over 41year old (p<0.001). Men received mean 1.67$\pm$1.54 mSv/year were higher than women who received mean 1.13$\pm$0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear modicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.59$\pm$1.81 msv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (p<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74$\pm$1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17$\pm$0.35 mSv/year and upper gastrointestinal room of mean 1.74$\pm$1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75$\pm$1.17 mSv/year and mean 1.50$\pm$1.39 mSv/year than other people who work in radiation area in hospital (p<0.05). Especially young doctors and technologists have the high opportunity to receive higher radiation exposure. Conclusions : The training and education of radiation workers for radiation exposure risks are important and it is necessary to rotate worker in short period in high risk area. The hospital management has to concern health of radiation workers more and to put an effort to reduce radiation exposure as low as possible in radiation areas in hospital.

  • PDF

A Study of Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET-CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Kim, Bit-Na;Cho, Suk Won;Lee, Juyoung;Lyu, Kwang Yeul;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to 99mTc emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radio technologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radio technologists. Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8cm$, mean weight: $65.9{\pm}1.4kg$). Radiation was measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150, and 200 cm, respectively. Then, all the procedure was given with a portable radiation shielding on the location of head, chest, and abdomen at the distance of 100, 150, and 200 cm and transmittance was calculated. In 10 cm, head ($105.40{\mu}Sv/h$) was the highest and foot($15.85{\mu}Sv/h$) was the lowest. In 200 cm, head, chest, and abdomen showed similar. On head, the measured dose rates were $9.56{\mu}Sv/h$, $5.23{\mu}Sv/h$, and $3.40{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.24{\mu}Sv/h$, $1.67{\mu}Sv/h$, and $1.27{\mu}Sv/h$ in 100, 150, and 200 cm on head. On chest, the measured dose rates were $8.54{\mu}Sv/h$, $4.90{\mu}Sv/h$, $3.44{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.27{\mu}Sv/h$, $1.34{\mu}Sv/h$, and $1.13{\mu}Sv/h$ in 100, 150, and 200 cm on chest. On abdomen, the measured dose rates were $9.83{\mu}Sv/h$, $5.15{\mu}Sv/h$, and $3.18{\mu}Sv/h$ in 100, 150, and 200 cm, respectively. When using shielder, it shows $2.60{\mu}Sv/h$, $1.75{\mu}Sv/h$, and $1.23{\mu}Sv/h$ in 100, 150, and 200 cm on abdomen. Transmittance was increased as the distance was expanded. As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the technologists.