• Title/Summary/Keyword: Nuclear Emergency

Search Result 460, Processing Time 0.032 seconds

EXPERT SYSTEM FOR A NUCLEAR POWER PLANT ACCIDENT DIAGNOSIS USING A FUZZY INFERENCE METHOD

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.505-518
    • /
    • 2001
  • The huge and complicated plants such as nuclear power stations are likely to cause the operators to make mistakes due to a variety of inexplicable reasons and symptoms in case of emergency. That’s why the prevention system assisting the operators is being developed for. First of all. I suggest an improved fuzzy diagnosis. Secondly, I want to demonstrate that a classification system of nuclear plant’s accident investigating the causes of accidents foresees possible problems, and maintains the reliability of the diagnostic reports in spite of improper working in part. In the event of emergency in a nuclear plant, a lot of operational steps enable the operators to find out what caused the problems based on an emergent operating plan. Our system is able to classify their types within twenty to thirty seconds. As so, we expect the system to put down the accidents right after the rapid detection of the damage control-method concerned.

Empirical Approach for Evaluating or Upgrading EOP Strategies Using the Decision theory and Simulator

  • Kim, Sok-Chul;Lee, Duck-Hun;Kim, Hyun-Jang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.833-837
    • /
    • 1998
  • This paper presents preliminary findings regarding a modeling framework under development for use in a multi-attribute decision model for advanced emergency operating procedures(EOPs). This model provides a means for optimal decision making strategy for advanced emergency operating procedures conceptualizing the dynamic coordination of responsibilities and information in the human system interactions with advanced reactor systems. For the purpose of evaluation of the applicability of this modeling framework, an empirical case study for a post-cooldown strategy during an steam generator tube rupture (SGTR) accident was carried out. As a result, it was found empirically that the multi-attribute decision model is a useful tool for establishing advanced EOPs that reduce the operator's cognitive and decision making burden during the accident mitigation process.

  • PDF

Radiation Induces Phosphorylation of STAT3 in a Dose- and Time-dependent Manner

  • Gao, Ling;Li, Feng-Sheng;Chen, Xiao-Hua;Liu, Qiao-Wei;Feng, Jiang-Bin;Liu, Qing-Jie;Su, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6161-6164
    • /
    • 2014
  • Background: We have reported the radiation could activate STAT3, which subsequently promotes the invasion of A549 cells. We here explored the dose- and time-response of STAT3 to radiation and the effect of radiation on upstream signaling molecules. Materials and Methods: A549 cells were irradiated with different doses of ${\gamma}$-rays. The expression of and nucleus translocation of p-STAT3 in A549 cells were detected by immunoblotting and immunofluorescence, respectively. The level of phosphorylated EGFR was also assessed by immunoblotting, and IL-6 expression was detected by real time PCR and ELISA. Results: Radiation promoted the phosphorylation of STAT3 at Y705 in a dose- and time-dependent manner and nuclear translocation. The level of phosphorylated EGFR in A549 cells increased after radiation. In additional, the mRNA and protein levels of IL-6 in A549 cells were also up regulated by radiation. Conclusions: STAT3 is activated by radiation in a dose-and time-dependent manner, probably due to radiation-induced activation of EGFR or secretion of IL-6 in A549 cells.

Development of an on-demand flooding safety system achieving long-term inexhaustible cooling of small modular reactors employing metal containment vessel

  • Jae Hyung Park;Jihun Im;Hyo Jun An;Yonghee Kim;Jeong Ik Lee;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2534-2544
    • /
    • 2024
  • This paper proposes a flooding safety system (FSS) and its operation strategy that can provide long-term safety and effective maintenance for modules of small modular reactor (SMR) and metal containment maintained at dried environment during normal operation. During hypothesized accidents, the FSS re-collects the evaporated steam into the common pool by the condenser installed above the common water pool and provides an emergency coolant for the cavities and auxiliary pools. This study suggested that the condensate re-collection strategy using the FSS can effectively delay the depletion of available water in response to the accidents. Without recollection, the achievable grace periods ranged from 44 to 1507 days for six-module and one-module accidents, respectively. However, with a full re-collection (ratio = 1.0), the time to total depletion of emergency coolant was estimated indefinite. Even with a partial re-collection ratio of 0.3, a grace period of 83.5 days could be ensured for a six-module transient. This study reported the effectiveness of condensate re-collection and the FSS as an innovative safety management strategy and system. Employing a condensate re-collection strategy with a high re-collection ratio can enhance the long-term safety and effective convenience of SMR operations and maintenance.