• Title/Summary/Keyword: Nuclear Cost

Search Result 637, Processing Time 0.03 seconds

Operating condition optimization of liquid metal heat pipe using deep learning based genetic algorithm: Heat transfer performance

  • Ik Jae Jin;Dong Hun Lee;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2610-2624
    • /
    • 2024
  • Liquid metal heat pipes play a critical role in various high-temperature applications, with their optimization being pivotal to achieving optimal thermal performance. In this study, a deep learning based genetic algorithm is suggested to optimize the operating conditions of liquid metal heat pipes. The optimization performance was investigated in both single and multi-variable optimization schemes, considering the operating conditions of heat load, inclination angle, and filling ratio. The single-variable optimization indicated reasonable performance for various conditions, reinforcing the potential applicability of the optimization method across a broad spectrum of high-temperature industries. The multi-variable optimization revealed an almost congruent performance level to single-variable optimization, suggesting that the robustness of optimization method is not compromised with additional variables. Furthermore, the generalization performance of the optimization method was investigated by conducting an experimental investigation, proving a similar performance. This study underlines the potential of optimizing the operating condition of heat pipes, with significant consequences in sectors such as high temperature field, thereby offering a pathway to more efficient, cost-effective thermal solutions.

A Study on Non Destructive Evaluation of the Steam Turbine L-0 Blades

  • Mizanur, Rahman Md.;Rezk, Osama;Ouma, Victor Otieno;Vaysidin, Saidov;Gomaa, M. Abdullatif;Jung, JaeCheon;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.59-71
    • /
    • 2016
  • The Nuclear and Fossil Steam Turbines record a considerable number of failures annually. Some of these failures reported are as result of blade failure. The failure of the L-0 blade in a Steam Turbine is one of the most reported blade failure in Nuclear and Fossil steam turbines. This paper seeks to identify the best Non Destructive Evaluation (NDE) method or methods to be used in the steam turbine L-0 blades inspection process. The development of systems engineering processes presents an opportunity to apply NDE inspection to the L-0 blades. This process apply computer modelling of the L-0 using ANSYS and by simulating the stresses experienced by the L-0 blade during operation it is possible to identify the most susceptible areas for crack formation and growth. The results from these models compared to industry data for validation. The analysis of these results used to predict the most probable failure location and failure modes. Therefore NDE inspection can be applied to these areas with greater degree of accuracy. This would be beneficial in the increasing the accuracy in the detection of cracks and hence save inspection time and the overall inspection cost. Furthermore, not only the location for crack formation and NDE inspection determined but also best the NDE inspection technique/techniques to be applied appropriately on the L-0 blade are prescribed.

The Optimal Energy Mix in South Korea's Electricity Sector for Low Carbon Energy Transition in 2030: In Consideration of INDC and Sequential Shutdown of Decrepit Nuclear Power Plants (저탄소 에너지 전환을 위한 2030년 최적전력구성비: 노후 원전 단계적 폐쇄와 INDC를 고려한 시나리오)

  • Kim, Dongyoon;Hwang, Minsup
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.479-494
    • /
    • 2017
  • After Fukushima incident, negative sentiment towards nuclear power has led to transition in policies that reduce the dependency on nuclear power in some countries. President Moon of Republic of Korea also announced a national plan of decommissioning retired nuclear power plants stage by stage. Therefore, nuclear power that once was considered the critical solution to energy security and climate change is now a limited option. This study aims to find an optimal energy mix in Korea's electricity system from 2016 through 2030 to combat climate change through energy transition with minimum cost. The study is divided into two different scenarios; energy transition and nuclear sustenance, to compare the total costs of the systems. Both scenarios show that electricity generated by wind technology increases from 2018 whereas that of photovoltaic(PV) increases from 2021. However, the total cost of the energy transition scenario was USD 4.7 billion more expensive than the nuclear sustenance scenario.

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

A Study on Removing the Magnetic Impurity in a Nuclear Pipe Line (원전 배관 내부유체의 자성 이물질 제거에 관한 연구)

  • Choi, Yoon-Hwan;Kim, Oh-Kuen;Suh, Yong-Kweon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.499-503
    • /
    • 2002
  • This work focuses on eliminating tiny particles from the coolant in a nuclear pipe line by using a permanent magnet on the exterior surface of the pipe. This method have some merits compared with the many applied methods and is expected to be applied to most of the pipe lines in the nuclear plant. For instance in this method, a ring is attached to the exterior surface of the pipe, so that it does not affect the inflows directly. Further, the cost needed in the initial build-up of the facility is low.

  • PDF

An Effect Analysis of Lead Time Changes on Investment Evaluation of a Nuclear Power Plant Construction : A Trade-Off Analysis Between a Construction Cost and Lead Time (원자력발전소 건설 리드타임의 변화가 투자프로젝트 평가에 미치는 효과분석: 발전소 건설비용과 리드타임 간의 상쇄효과분석)

  • Kim, Gyu-Tai;Lee, Byung-Gook;Oh, Chi-Jae
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.414-423
    • /
    • 1999
  • A nuclear power plant requires a huge amount of initial investment and long construction lead time. As we expect that there may exist a relationship between investment and construction lead time, a number of researchers have reported that nearly a half of investments is incurred due to time factors such as the time value of money and inflation or escalation rates. Therefore, we investigated in this paper a relationship between the initial investment and the construction lead time of a nuclear power plant construction, and proposed a method for a trade-off analysis between the annual equivalent worth and the investment alternatives to reduce the construction lead time. Finally, we presented a real case to numerically explain the steps of the method presented in this paper.

  • PDF

Tube Plugging Criteria for the Non-Regenerative Heat Exchanger in the Steam Generator Blowdown System of Nuclear Power Plant (증기발생기 취출수계통 비재생열교환기 전열관 관막음 기준 설정)

  • Kim, Hyeong-Nam;Choe, Seong-Nam;Yu, Hyeon-Ju;Choe, Jin-Hyeok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.38-40
    • /
    • 2006
  • Nuclear power plants are urged to reduce operating and maintaining costs to remain competitive as well as to increase the safety preventing the radioactive material to the atmosphere. To reduce the cost and to increase the safety, the inspection of balance-of-plant heat exchanger becomes important. However, there are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. The codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the non-regenerative heat exchanger in the steam generator blow-down system of nuclear power plant. This method relies on the similar method used to establish the plugging criteria for the steam generator tubes.

  • PDF

Human factors engineering progrma in nuclear power plant (원자력 발전소 인간공학 프로그램)

  • 나정창;이호형
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.125-140
    • /
    • 1996
  • Human Factors Engineering(HFE) program should be developed from the early stage of the design process for Nuclear Power Plant. The HFE program is conducted in accordance with the guidance in the Standard Review Plan(SRP) NUREG 0800, Chapter 18. The major purpose of this program is to reduce the incidence of human error during the operating life of the plants. A comprehensive human factors program is prepared by KOPEC to assure that key elements of human factors involvement are not inadvertently overlooked and the early, complete, and continuing inclusion of HFE in the design process. This paper is to introduce engineering steps of the HF activities to verify that the HF involvements on man-machine interface are adequate to support safe and efficient operation of nuclear power plant. If systems are developed without sufficient consideration on the HFE in the design, such systems may cost a high price due to the malfunction of the plant induced by the human errors.

  • PDF

Clinical Application of $^{18}F-FDG$ PET in Non-Small Cell Lung Cancer (비소세포성 폐암에서의 $^{18}F-FDG$ PET의 임상 이용)

  • Choi, Joon-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.17-28
    • /
    • 2008
  • This review focuses on the clinical use of $^{18}F-FDG$ PET to evaluate solitary pulmonary nodule (SPN) and non-small cell lung cancer (NSCLC). When SPN or mass without calcification is found on chest X-ray or CT, $^{18}F-FDG$ PET is an effective modality to differentiate benign from malignant lesions. For initial staging of NSCLC, $^{18}F-FDG$ PET is useful, and proved to be cost-effective in several countries. $^{18}F-FDG$ is useful for detecting recurrence, restaging and evaluating residual tumor after curative therapy in NSCLC. For therapy response assessment, $^{18}F-FDG$ PET may be effective after chemotherapy or radiation therapy. $^{18}F-FDG$ PET is useful to predict pathological response after neoadjuvant therapy in NSCLC. For radiation therapy planning, $^{18}F-FDG$ PET may be helpful, but requires further investigations. PET/CT is better for evaluating NSCLC than conventional PET.

Clinical Application of F-18 FDG PET (PET/CT) in Colo-rectal and Anal Cancer (대장-직장 및 항문암에서 F-18 FDG PET (PET/CT)의 임상 이용)

  • Kim, Byung-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.52-59
    • /
    • 2008
  • In the management of colo-retal and anal cancer, accurate staging, treatment evaluation, early detection of recurrence are main clinical problems. F-18 FDG PET (PET/CT) has been reported as useful in the management of colo-rectal and anal cancer because that PET has high diagnostic performance comparing to conventional studies. In case of liver metastases, for confirmation of no extrahepatic metastases, in case of high risk of metastasis, for avoiding unnecessary operation, PET (PET/CT) is expected more useful. In anal cancer, PET is expected useful in lymph node staging. For the early prediction of chemotherapy or radiation therapy effect PET has been reported as useful, also. In early detection of recurrence by PET, cost-benefit advantages has been suggested, also. PET/CT is expected to have higher diagnostic performance than PET alone.