• 제목/요약/키워드: Nuclear Cost

검색결과 637건 처리시간 0.026초

LINEAR PROGRAMMING OPTIMIZATION OF NUCLEAR ENERGY STRATEGY WITH SODIUM-COOLED FAST REACTORS

  • Lee, Je-Whan;Jeong, Yong-Hoon;Chang, Yoon-Il;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.383-390
    • /
    • 2011
  • Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters.

선형계획법을 이용한 한국 원전연료주기의 최적화 (Optimization of the Korean Nuclear Fuel Cycle Using Linear Programming)

  • 김진일;채규남;이병휘
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.721-729
    • /
    • 1995
  • 000년부터 2030년까지의 한국 원전연료주기의 최적전략을 도출하기 위하여 선형계획법을 사용하였다. 최적화를 위한 결정 인자로서는 원전연료 주기비용, 요소비용의 불확실성, 우라늄 소요량을 사용하였다. 위의 인자들을 동시에 고려하기 위하여 각각에 대한 만족도 중 최소값을 최대화하는 퍼지 의사결정기법을 이용하였다. 사용 후 원전 연료에 대한 가능한 선택대안으로는 직접처분, DUPIC, 재처리를 가정하였다. 한국의 원전연료주기 전략은 2010년경부터 재처리를 시작하여 그 처리용량을 2025년경에는 800톤까지 점차로 늘려 나가고, DUPIC 처리를 2025년경부터 시작하는 것이 최적인 것으로 나타났다. 요소비용의 불확실성과 우라늄 소요량을 고려함으로써 단순히 비용만을 고려한 경우보다 총비용은5.4%증가하나, 요소비용 불확실성은 7.1%, 우라늄 소요량은 6. d1% 감소하는 것으로 나타났다.

  • PDF

A Study on Recalculating Nuclear Energy Generation Cost Considering Several External Costs

  • Kim, Hyun-Jung;Yee, Eric
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.5-10
    • /
    • 2018
  • Nuclear energy issues such as safety and social acceptance can not only influence the production costs of generating nuclear power, but also the external costs that are not reflected in market prices. Consequently, the social issues affiliated with nuclear power, beyond a severe accident, require some form of financial expense. The external social issues considered here are accident risk and realization, regulatory costs, and nuclear energy policy costs. Through several calculations and analyses of these external costs for nuclear power generation, it is concluded that these costs range from 7 to 27 \/kWh. Considering external costs are required for making energy plans, it could have an influence on generation costs.

후행 핵연료주기 경제성 평가의 불확실성 사례 (Uncertainty Cases in Economic Evaluation of Back-End Nuclear Fuel Cycle)

  • 김형준;조천형;이경구
    • 방사성폐기물학회지
    • /
    • 제6권2호
    • /
    • pp.141-145
    • /
    • 2008
  • 후행 핵연료주기 경제성 평가는 추정 비용의 불확실성, 평가 대상기간의 장기성, 적용 할인율에 따른 계산결과의 변동성 등 많은 불확실성을 내포하고 있기 때문에 평가기관 또는 평가자에 따라 그 결과가 서로 상이하다. 본고에서는 지금까지 수행된 주요 경제성 평가 연구들을 조사/분석하여 그 특징과 한계를 알아봄으로써 현재 국내에서 추진되고 있는 사용후핵연료 공론화 및 후행 핵연료주기 정책 연구 추진에 기초자료로 활용될 수 있도록 하고자 하였다. 분석 결과 사용후핵연료 재활용 옵션에 비해 직접처분 옵션이 유리하나, 입력 자료로 사용된 파라미터 값에 따라 결과의 불확실성이 많이 나타나 이 부분에 대한 추가적인 연구가 필요하다는 사실을 알 수 있었다.

  • PDF

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

Practical Issues of Earned Value Management Systems (EVMS) for Nuclear Power Plant (NPP) Construction

  • Jung, Youngsoo;Kim, Sungrae;Moon, Byeong-Suk
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.696-697
    • /
    • 2015
  • Cost, schedule, and quality are the three major performance indicators for any construction project. Under the globalized competition in the nuclear industry, researchers and practitioners have also explored a systemized and integrated management system for cost, schedule, and quality. In order to address this issue, the concept of earned value management system (EVMS) has been often utilized. However, implementing EVMS for a mega-project of nuclear power plant (NPP) construction requires extensive overhead efforts. Though previous studies proposed structures and methods for effective NPP EVMS, there has been no legitimate study for data collection strategy for practical implementation. In this context, the purpose of this paper is to develop an effective data collection strategy for NPP EVMS. Firstly, the barriers to practical NPP EVMS were identified based on literature review and expert interviews. Strategies for data collection were then developed based on different phases of project life cycle. This study focuses on the 'life-cycle integrated progress management system' for NPP construction from an owner's perspective Therefore, results of this study can be used as a guide for preparing request for proposals (RFP) of an NPP owner organization.

  • PDF

Fuel Cycle Cost Calculation

  • Lee, Chang-Kun;Kang, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.55-66
    • /
    • 1969
  • 1974년도에 가동될 고리 원자력 발전소(Westinghouse 600 MWe PWR)의 핵연료 주기비를 계산했다. 적용한 가정과 가격은 현재 핵 공학계에서 인용하는 것에 기준을 두었고, 한국이라는 국지적 조건을 참작하였다. 계산방식은 가장 적절하다고 생각되는 것을 Normal로 두어, 이 보다 좋거나 나쁜 조건을 고려하였다. 마지막으로 각 Parameter가 주어진 범위 내에서 변하는 것을 Normal과 비교하고 전비용중에서 각각이 차지하는 비율을 검토했는데 그 결과 Uranium 원광비, 성형가공비가 가장 비율이 크고, 그 다음이 이자율, Plutonium Credit, Plant Capacity Factor 등의 순이었다.

  • PDF

Analysis of the Nuclear Subcriticality for the High Density Spent Fuel Storage at PWR Plants

  • Koh, Duck-Joon;Yang, Ho-Yeon;Kim, Byung-Tae;Jo, Chang-Keun;Hokyu Ryu;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.470-475
    • /
    • 1998
  • The marginal nuclear criticality analysis for the high density spent fuel storage at a PWR plant was carried out by using the HELIOS and CASMO-3 codes. More than 20 % of the calculated reactivity saving effect is observed in this analysis. This mainly comes from the adoption of some important fission products and B-10 in the criticality analysis. By taking burnup and boron credits, the high capacity of the spent fuel storage rack can be more fully utilized, reducing the space of storage. Larger storage for a given inventory of spent fuel should result in remarkable cost savings and mort importantly reduce the risks to the public and occupational workers.

  • PDF

Effects of the move towards Gen IV reactors in capacity expansion planning by total generation cost and environmental impact optimization

  • Bamshad, Ali;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1369-1377
    • /
    • 2021
  • Nowadays, it is necessary to accelerate the construction of new power plant in face of rising energy demand in such a way that the electricity will be generated at the lowest cost while reducing emissions caused by that generation. The expansion planning is one of the most important issues in electricity management. Nuclear energy comes forward with the low-carbon technology and increasing competitiveness to expand the share of generated energy by introducing Gen IV reactors. In this paper, the generation expansion planning of these new Gen reactors is investigated using the WASP software. Iran power grid is selected as a case of study. We present a comparison of the twenty-one year perspective on the future with the development of (1) traditional thermal power plants and Gen II reactors, (2) Gen III + reactors with traditional thermal power plants, (3) Gen IV reactors and traditional thermal power plants, (4) Gen III + reactors and the new generation of the thermal power plant, (5) the new generation of thermal power plants and the Gen IV reactors. The results show that the Gen IV reactors have the most developing among other types of power plants leading to reduce the operating costs and emissions. The obtained results show that the use of new Gen of combined cycle power plant and Gen IV reactors make the emissions and cost to be reduced to 16% and 72% of Gen II NPPs and traditional thermal power plants, respectively.

Verification of multilevel octree grid algorithm of SN transport calculation with the Balakovo-3 VVER-1000 neutron dosimetry benchmark

  • Cong Liu;Bin Zhang;Junxia Wei;Shuang Tan
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.756-768
    • /
    • 2023
  • Neutron transport calculations are extremely challenging due to the high computational cost of large and complex problems. A multilevel octree grid algorithm (MLTG) of discrete ordinates method was developed to improve the modeling accuracy and simulation efficiency on 3-D Cartesian grids. The Balakovo-3 VVER-1000 neutron dosimetry benchmark is calculated to verify and validate this numerical technique. A simplified S2 synthetic acceleration is used in the MLTG calculation method to improve the convergence of the source iterations. For the triangularly arranged fuel pins, we adopt a source projection algorithm to generate pin-by-pin source distributions of hexagonal assemblies. MLTG provides accurate geometric modeling and flexible fixed source description at a lower cost than traditional Cartesian grids. The total number of meshes is reduced to 1.9 million from the initial 9.5 million for the Balakovo-3 model. The numerical comparisons show that the MLTG results are in satisfactory agreement with the conventional SN method and experimental data, within the root-mean-square errors of about 4% and 10%, respectively. Compared to uniform fine meshing, approximately 70% of the computational cost can be saved using the MLTG algorithm for the Balakovo-3 computational model.