• Title/Summary/Keyword: Nuclear Component

Search Result 714, Processing Time 0.038 seconds

Inulin stimulates NO synthesis via activation of PKC-$\alpha$ and protein tyrosine kinase, resulting in the activation of NF-$textsc{k}$B by IFN-ν-primed RAW 264.7 cells

  • Koo, Hyun-Na;Hong, Seung-Heon;Kim, Hyung-Min
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.78-78
    • /
    • 2003
  • Inulin, an active component of Chicorium intybus root, has been shown to stimulate the growth of bifidobacteria, and inhibit colon carcinogenesis. NO mediates a number of the host-defense functions of activated macrophages, including antimicrobial and tumoricidal activity. We examined the effect of inulin on the synthesis of NO in RAW 264.7 cells. Inulin alone had no effect, whereas inulin with IFN-ν synergistically increased the NO production and inducible NO synthase (iNOS) expression in RAW 264.7 cells. Synergy between IFN-ν and inulin was mainly dependent on inulin-induced TNF-${\alpha}$ secretion. Also, protein kinase C (PKC)-${\alpha}$ was involved in the inulin-induced NO production. Inulin-mediated NO production was inhibited by the protein tyrosine kinase (PTK) inhibitor, tyrphostin AG126. Since iNOS gene transcriptions have been shown to be under the control of the NF -$\kappa$B/Rel family of transcription factors, we assessed the effect of inulin on NF -$\kappa$B/Rel using an EMSA. Inulin produced strong induction of NF-$\kappa$B/Rel binding, whereas AP-l binding was slightly induced in RAW 264.7 cells. Inulin stimulated phosphorylation and degradation of I$\kappa$B-${\alpha}$. These results suggest that in IFN-ν-primed RAW 264.7 cells inulin might stimulate NO synthesis via activation of PKC-${\alpha}$ and PTK, resulting in the activation of NF-$\kappa$B.

  • PDF

Changes in Skp2 in Helicobacter pylori-Infected Gastric Epithelial Cells (Helicobacter pylori에 감염된 위상피세포에서 Skp2의 변화)

  • Chung, Hae-Yun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.64-68
    • /
    • 2012
  • It has been suggested that Helicobacter pylori(H. pylori) infections can promote the development and progression of gastric cancer through the modulation of cell cycle regulators such as $p27^{Kip1}$ and Skp2. $p27^{Kip1}$ is a cyclin-dependent kinase (CDK) inhibitor that blocks the G1/S transition necessary for cell cycle progression. Skp2 is a component of the ubiquitin ligase complex called $SCF^{Skp2}$(SKP1-Cullin-F-box), which specifically binds and promotes the degradation of $p27^{Kip1}$. A low level of $p27^{Kip1}$ and a high level of Skp2 have been reported in many types of cancers, including gastric cancer. In addition, a decrease in $p27^{Kip1}$ has been reported in H. pylori-infected specimens. However, data on Skp2 in H. pylori infections are limited. This study examines the changes in the status of Skp2 in H. pylori-infected gastric epithelial AGS cells. For this, we stimulated AGS cells with H. pylori(NCTC 11637) at the ratio of 300:1(bacterium:cell) for 6 hours. The results of an immunoprecipitation analysis, followed by a western blot, indicate that the interaction between Skp2 and 14-3-3 was elevated 3 hours after the H. pylori treatment. In addition, there was an increase in cytoplasmic Skp2 after 3 hours, whereas there was no change in the nuclear level. Since it has been reported that interaction with 14-3-3 and the subsequent cytoplasmic translocation of Skp2 can increase its protein stability, increases in the interaction with 14-3-3 and the cytoplasmic Skp2 after the H. pylori treatment can increase the level of Skp2 in AGS cells. This phenomenon may explain, at least to some extent, the mechanism underlying the relationship between H. pylori infections and gastric carcinogenesis.

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

  • Jung, Jee-Youn;Kim, Il-Yong;Kim, Yo-Na;Kim, Jin-Sup;Shin, Jae-Hoon;Jang, Zi-Hey;Lee, Ho-Sub;Hwang, Geum-Sook;Seong, Je-Kyung
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.419-424
    • /
    • 2012
  • High-fat diets (HFD) and high-carbohydrate diets (HCD)-induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ($^1H$ NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from $^1H$ NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that $^1H$ NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.

Molecular Cloning, Transcriptome Profiling, and Characterization of Histone Genes in the Dinoflagellate Alexandrium pacificum

  • Riaz, Sadaf;Sui, Zhenghong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1185-1198
    • /
    • 2018
  • The nucleosomal organization of chromatin using histone proteins is a fundamental and ubiquitous feature of eukaryotic nuclei, with the major exception of dinoflagellates. Although a number of recent genomic and transcriptomic analyses have detected numerous histone genes in dinoflagellates, little is known about their expression. Here in, we aimed to investigate the expression pattern of histone genes under nutritional stress, and an attempt was made to detect histone expression at the protein level in Alexandrium pacificum. The presence of histones at the mRNA level was confirmed in this study by the amplification, cloning, and sequencing of 10 different genes. Relative expression profiling of these genes under different growth conditions was determined with real-time PCR and revealed considerable levels of histone transcription in nutritionally stressed cells. We were unable to detect the expression of histones at the protein level even after immunodetection and analysis using mass spectrometry, although a histone-like protein was detected as a major nuclear component. A. pacificum expresses multiple variants of histone, and protein sequences revealed both conservation and divergence with respect to other eukaryotes. We concluded that A. pacificum maintained an active transcription of histone genes within the cell, and enhanced expression of histone genes in nutritional stress strongly suggest that histones have functional significance in dinoflagellates, although expression at the protein level was below our current detection limits, which suggests a limited role of histones in DNA packaging. Finally, the plausible regulation of histone expression at the gene and protein levels in A. pacificum is discussed.

Initial Subcellular Responses of Susceptible and Resistant Soybeans Infected with the Soybean Cyst Nematode

  • Kim, Young Ho;Kim, Kyung Soo;Riggs, Robert D.
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • Initial subcellular responses in susceptible (PI 274420) and resistant (cv. Hartwig) soybeans infected with the soybean cyst nematode (SCN) were examined 2 and 4 days after inoculation (DAI). Subcellular features common to both soybeans at 2 DAI included hypertrophied initial syncytial cells (ISCs) and syncytium-component cells (SCs) with a dense cytoplasm containing proliferated rough and smooth endoplasmic reticulum (RER and SER), a hypertrophied nucleolus, and reduced vacuoles, suggesting that the nematode-infected cells were dedifferentiated. In the resistant soybean, a striking initial subcellular difference from the susceptible soybean was the dilation of the RER, indicating ER dysfunction and leading to cell death. This disturbed nematode feeding, as evidenced by disrupted feeding tubes. In PI 274420, the ISC cytoplasm was depleted, with the exception of ER membranes, at 4 DAI, while the SC cytoplasm was dense with proliferation of starch-containing plastids around multiple nuclei that might be derived from the congregation of nuclei in the neighboring SCs and in part by nuclear division without cytokinesis. In cv. Hartwig, syncytia were necrotized with secondary cell wall thickening outside the plasma membrane and an extremely dense cytoplasm containing a nucleus with an electron-lucent nucleolus, accompanied by the proliferation of closely stacked parallel RER and ribosomes. These results suggest that syncytia develop continuously in PI 274420 to produce and store nutritional substances in SCs, providing for the nematode through ISC until maturation, but in cv. Hartwig, syncytia degenerate early due to excessive metabolism, blocking nematode feeding and cytoplasmic connections with adjacent intact cells.

Prediction of the Dynamic Adsorption Behaviors of the Uranium and Cobalt Ions in a Fixed Bed by Surface Modified Activated Carbon (표면개질 활성탄을 이용한 고정층에서 우라늄 및 코발트 이온의 동적 흡착거동 모사)

  • Geun-IL Park;Jung-Won Lee;Kee-Chan Song;In-Tae Kim;Kwang-Wook Kim;Myung-Seung Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.81-92
    • /
    • 2003
  • In order to predict the dynamic behaviors of uranium and cobalt in a fixed bed at various influent pH values of liquid waste, the adsorption system is regarded as a multi-component adsorption between each ionic species in the solution. Langmuir isotherm parameters of each species were extracted by incorporating equilibrium data with the solution chemistry of the uranium and cobalt using IAST. Prediction results were in good agreement with the experimental data, except for a high concentration and pH. Although there was some limitations in predicting the cobalt adsorption, this method may be useful in analyzing a complex adsorption system where various kinds of ionic species exist in a solution.

  • PDF

Microstructure and Mechanical Property of Irradiated Zr-2.5Nb Pressure Tube in Wolsong Unit-1

  • 김영숙;안상복;오동준;김성수;정용무
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.241-241
    • /
    • 1999
  • With the aim of assessing the degradation of Zr-2.5Nb pressure tubes operating in the Wolsong unit-1 nuclear power plant, characterization tests are being conducted on irradiated Zr-2.5Nb tubes removed after 10-year operation. The examined tube had been exposed to temperatures ranging from 264 to 306℃ and a neutron fluence of 8.9×$10^{21}$ n/cm²(E>1 MeV) at the maximum. Tensile tests were carried out at temperatures ranging from RT to 300℃. The density of a-type and c-type dislocations was examined on the irradiated Zr-2.5Nb tube using a transmission electron microscope. Neutron irradiation up to 8.9×$10^{21}$ n/cm²(E>1 MeV) yielded an increase in a-type dislocation density of the Zr-2.5Nb pressure tube to 7.5×$10^{14} m^{-2}$, which was highest at the inlet of the tube exposed to the low temperature of 275℃. In contrast, the c-component dislocation density did not change with irradiation, keeping an initial dislocation density of 0.8×$10^{14} m^{-2}$ over the whole length of the tube. As expected, the neutron irradiation increased mechanical strength by about 17-26% in the transverse direction and by 34-39% in the longitudinal direction compared to that of the unirradiated tube at 300℃. The change in the mechanical properties with irradiation is discussed in association with the microstructural change as a function of temperature and neutron fluence.

High-Temperature Structural Analysis of a Small-Scale PHE Prototype - Analysis Considering Material Properties in Weld Zone - (소형 공정열교환기 시제품 고온구조해석 - 용접부 물성치를 고려한 해석 -)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1289-1295
    • /
    • 2012
  • A process heat exchanger (PHE) in a nuclear hydrogen system is a key component for transferring the considerable heat generated in a very high temperature reactor (VHTR) to a chemical reaction that yields a large quantity of hydrogen. A performance test on a small-scale PHE prototype made of Hastelloy-X is underway in a small-scale gas loop at the Korea Atomic Energy Research Institute. Previous research on the high-temperature structural analysis of the small-scale PHE prototype had been performed using base material properties. In this study, a high-temperature structural analysis considering the mechanical properties in the weld zone was performed, and the obtained results were compared with those of the previous research.

High-Temperature Structural Analysis of a Medium-Scale Process Heat Exchanger Prototype (중형 공정열교환기 시제품 고온구조해석)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1283-1288
    • /
    • 2012
  • A process heat exchanger (PHE) in a nuclear hydrogen system is a key component for transferring the considerable heat generated in a very high temperature reactor (VHTR) to a chemical reaction that yields a large quantity of hydrogen. A performance test on a medium-scale PHE prototype made of $Hastelloy^{(R)}$-X is scheduled in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a preliminary study before carrying out the performance test in the gas loop, high-temperature structural analysis modeling and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints were carried out under the gas loop test condition. The results obtained in this study will be compared with the performance test results of the medium-scale PHE prototype in the gas loop.