The loss of coolant accident based on a double-ended cold leg break is analyzed with the discharge coefficient (Ca) of 0.4. This analysis covers the whole transient period from the start of depressurization to the complete refilling of the core by using RELAP4/MOD6-EM and RELAP4/ MOD6-HOT CHANNEL for the system thermal-hydraulics and the fuel performance during the blowdown phase respectively, and RELAP4/MOD6-FLOOD and TOODEE2 during the reflood phase. A simple analytical method has been developed to account for the lower plenum filling by approximating steam-water countercurrent flows and superheated wall effects at the downcomer during the refill period. Based on the informations. at the time of EOB (end-of-bypass), the refill duration time and the initial reflooding temperature were estimated and compared with the results from the RELAP4/MOD6, resulting in a good agreement. In addition, some parametric studies on the EOB were performed. The form loss coefficient between upper head and upper downcomer was found to be sensitive to the occurrence of the spurious EOB. Appropriate form loss coefficients should be taken into account to avoid the flow oscillations at the downcomer. The analyses with the six and three volume core nodalizations, respectively, show much similar trends in the system thermal-hydraulic performance, but the former case is recommended to obtain good results.
The first-ever integral effect test for simulating a guillotine break of a DVI (Direct Vessel Injection) line of the APR1400 was carried out with the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) from the same prototypic pressure and temperature conditions as those of the APR1400. The major thermal hydraulic behaviors during a DVI line break accident were identified and investigated experimentally. A method for estimating the break flow based on a balance between the change in RCS inventory and the injection flow is proposed to overcome a direct break low measurement deficiency. A post-test calculation was performed with a best-estimate safety analysis code MARS 3.1 to examine its prediction capability and to identify any code deficiencies for the thermal hydraulic phenomena occurring during the DVI line break accidents. On the whole, the prediction of the MARS code shows a good agreement with the measured data. However, the code predicted a higher core level than did the data just before a loop seal clearing occurs, leading to no increase in the peak cladding temperature. The code also produced a more rapid decrease in the downcomer water level than was predicted by the data. These observable disagreements are thought to be caused by uncertainties in predicting countercurrent flow or condensation phenomena in a downcomer region. The present integral effect test data will be used to support the present conservative safety analysis methodology and to develop a new best-estimate safety analysis methodology for DVI line break accidents of the APR1400.
Song, Kyu-Min;Sohn, Soon Hwan;Chung, Hongsuk;Yun, Sei-Hun;Jung, Ki Jung
Korean Chemical Engineering Research
/
v.50
no.4
/
pp.595-603
/
2012
International Thermonuclear Experimental Reactor (ITER) will be constructed in 2019 according to the JIA (Joint Implementation Agreement) of 7 countries. The ITER fusion fuel cycle consists of fusion vacuum vessel, tritium plant and fuelling system. The tritium plant provides the functions of storage, delivery, separation, removal and recovery of the deuterium and tritium used as fusion fuels for the ITER. The tritium plant systems supply deuterium and tritium from external sources and treat all tritiated fluids from ITER operation through Storage and Delivery System (SDS), Tokamak Exhaust Processing (TEP), Isotope Separation System (ISS), Water Detritiation System & Atmosphere Detritiation System (WDS & ADS) and Analysis System (ANS). In this paper, the functions and design requirements of the major systems in the tritium plant and the status of R&D are described. Korean party is developing the SDS for ITER tritium plant and partially attaining the WDS technology through the construction and operation experience of the Wolsong Tritium Removal Facility (WTRF). Now it is expected that researchers in other fields such as chemical engineering take part in the development of upcoming technologies for ISS and TEP.
A great variety of nuclear gamma rays emitted from fission and activation products of spent nuclear fuel contains much information that can be elicited without affecting the integrity of the fuel elements. But the extraction of such information from the complex spectrum is difficult and requires computer codes. In the present work, a versatile code 'CAERI' was developed which locates peaks and calculates their areas for X-rays as well as gamma rays using elegant features of some widely used programs for gamma-ray peak fitting. 'CAERI' coded in FORTRAN used infinite series approximation more accurate than other workers various, simple, piecewise series approximations for evaluations of the Voigt function which represents the X-ray peak with non-negligible natural line width. 'CAERI' can handle even a complex multiplet consisting of peaks from X-rays and gamma rays in arbitrary mixture, which one often encounters in the isotopic analysis of heavy elements such as U and Pu. The results of the fitting performed on the test spectra of $^{177m}\;Lu\;{\gamma}-ray\;and\;^{235}U\;K_{\alpha}$X-ray show good agreement with those by previous workers.
Transactions of the Korean Society of Mechanical Engineers B
/
v.35
no.1
/
pp.33-42
/
2011
In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.
The fission gas release model used In the SPEAR-BETA fuel performance code was modified by use of effective thermal conductivity for cracked fuel and by laking Into account axial fission-gas mixing between the fuel-clad gap and the plenum. With use of this modified model the fission gas release was analyzed under various power ramping conditions of P$_{max}$ and $\Delta$.fP. Effective fuel thermal conductivity that accounts for the effect of fuel tracking was used in calculation of the fuel temperature distribution and the Internal gas pressure under power ramping conditions. Mixing and dilution effects due to axial gas flow were also considered in computing the width and the thermal conductivity of the gap. The effect of axial gas flow w3s solved by the Crank-Nicholson method. The finite difference method was used to save running time in the calculation. The present modified fission-gas release model was validated by comparing its predicted results with experimental data from various lamping tests In the literature and calculated results with use of the models used In the SPEAR-BETA and FEMAXI-IV codes. Results obtained with use of the present modified model showed better agreement with experimental data reported in the literature than those results with use of the latter codes. The fuel centerline temperature calculated with introduction of effective thermal conductivity for centerline temperature calculated with Introduction of effective thermal conductivity for cracked fuel was 200 higher fission gas release predicted with use of the modified model was nearly 6% larger on the average than that calculated by use of the unmodified model used in the SPEAR-BETA code.e SPEAR-BETA code.e.
Influence diagram method is applied to containment performance analysis of Young-Gwang 3&4 in an effort to overcome some drawbacks of current containment performance analysis method. Event tee methodology has been adopted as a containment performance analysis method. There are, however, some drawbacks on event tree methodology. This study is to overcome three major drawbacks of the current containment performance analysis method : 1) Event tree cannot express dependency between events explicitly. 2) Accident Progression Event Tree (APET) cannot represent entire containment system. 3) It is difficult to consider decision making problem. To resolve these problems, influence diagrams, is proposed. In the present ok, the applicability of the influence diagrams has been demonstrated for YGN 3&4 containment performance analysis and accident management strategy assessments of this study are in good agreement with those of YGN 3&4 IPE. Sensitivity analysis has been peformed to identify relative important variables for each early containment failure, late containment and basemat melt-though. In addition, influence diagrams are used to assess two accident management strategies : 1) RCS depressurization, 2) cavity flooding. It is shown that influence diagrams can be applied to the containment performance analysis.
Proceedings of the Korean Radioactive Waste Society Conference
/
2005.06a
/
pp.335-343
/
2005
The Methodology of burnup calculation with EPMA test set up in this study. The spent fuel from PWR nuclear power plant was used as specimen. This $UO_2$ fuel with $3.2\%$ of enrichment had been irradiated up to 35,000 MWd/MTU(reference data). The burnup is very important factor for nuclear fuel to estimate all fuel behaviors in reactor. To measure amounts of fission products and actinides for the burnup calcualation, chemical analysis (destructive method) has been used but it mattes long experimental time and second radio-wastes. In this study, EPMA test was available to measure amount of fission products. Neodymium is able to be detected and quantified. It can be compared with the results from chemical analysis and ORIGEN-2 code calculation. Concentration of Nd from EPMA test showed good agreement with result of ORIGEN-2 code in the same burnup.
An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.
We have applied the temperature dependent Thomas-Fermi theory to evaluate the equations of state, chemical potentials, entropies, % ionizations, total energies and kinetic energies of an atom, and seveal thermodynamic quantifies of one of metallic substance, Na, for a density range of 0.1$\rho$$_{0}$ ~ 10$\rho$$_{0}$, where $\rho$$_{0}$ is the normal density of Na at its melting point, and for a temperature range of 60.88Ryd. ~0.0216 Ryd., where the system is expected to be in a gaseous or liquid state. The main interest of present work lies in physical quantities at high temperatures and high densities, however, we have included those quantities of Na at sufficiently low temperatures and low densities to show that the approximation is not so crude as one might expect. Particularly, at high temperatures, the calculated equations of state, kinetic energies of an atom, chemical potentials and entropies are compared with those, of an ideal Fermi gas. The results show that, at high temperatures, the agreement seems good for chemical Potentials. However, the differences in, entropy, kinetic energy of an atom, and equation of state are not negligible even at such high temperature as $textsc{k}$T=60.88Ryd.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.