• Title/Summary/Keyword: Nu-Re 상관관계식

Search Result 2, Processing Time 0.018 seconds

Analysis of Temprature and Thermal Stress Distribution of a DI Diesel Engine Cylinder Head(PART I) (직접분사식 디젤엔진 실린더헤드의 온도 및 열응력 분포해석(PART I))

  • 이진호;이교승;장경준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.187-196
    • /
    • 1996
  • In this study, 3-dimensional finite element model of a diesel engine cylinder head was made to accomplish heat transfer analysis and also thermal stress and deformation analysis. Heat release analysis and Nusselt-Reynolds correlations were applied to determine the convective boundary conditions which are required for heat transfer analysis to calculate temperature distribution. Thermal stress distribution was also investigated from heat transfer analysis results. Steady state temperature and heat flux were measured by using K-type thermocouples and then compared with numerical results to give a guarantee for the propriety of numerical analyses.

  • PDF

Fluidization and Heat Transfer Characteristics in the Fluidized Bed(II) (기일고류동층내류동화(氣一固流動層內流動化) 및 전열특성(傳熱特性)에 관한 연구(硏究)(II))

  • Park, Jong-Suen;Baek, Ko-Kil;Kim, Yeun-Young;Jeon, Sung-Taek
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.51-60
    • /
    • 1994
  • The fluidization characteristics of the furan foundry sand fluidized bed and the heat transfer characteristics on a single spiral coil tube in the bed have been investigated. In the paper, the heat transfer coefficients for a single spiral coil tube are measured in the furan foundry sand bed as a function of the ratio of heated coil tube pitch to diameter(p/Do) and the ratio of heated coil tube pitch to particle size(p/dp). The experimental results are as follows. 1) Mean heat transfer coefficients increases according to the increasing ratio of heated coil tube pitch to diameter(p/Do). 2) The Increasing rates of mean Nusselt numbers are more greater in the case of p/Do=1.58 than p/Do=4.75. 3) Mean Nusselt number can be expressed by the following equation, $Nu_{mean}=C\;Re^m\;Pr_g^{0.4}(p/dp)^n$.

  • PDF