• Title/Summary/Keyword: Nozzle with thin plate

Search Result 6, Processing Time 0.024 seconds

Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate (박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성)

  • Kim, Donguk;Jung, Jae Hoon;Seo, Hyunduk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

Establishment of Manufacturing Conditions for Magnesium Alloy Thin Plate using Melt Drag Method (용융드래그방법을 이용한 마그네슘 합금 박판의 제조조건 확립)

  • Han, Chang-Suk;Kwon, Yong-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.511-518
    • /
    • 2021
  • An investigation is performed to clarify the manufacturing conditions of pure magnesium and AZ31 magnesium alloy thin plate using the melt drag method. By the melt drag method, suitable for magnesium molten metal, pure magnesium can be produced as a continuous thin plate with a thickness of 1.4 mm to 2.4 mm in the range of 5 m/min to 20 m/min of roll speed, and the width of the thin plate to the nozzle outlet width. AZ31 magnesium alloy is able to produce a continuous sheet of thickness in the range of 5 m/min to 30 m/min in roll circumferential speed, with a thickness of 0.6 mm to 1.6 mm and a width of the sheet matching the nozzle outlet width. In the magnesium melt drag method, the faster the circumferential speed of the roll, the shorter the contact time between the molten metal and the roll, and it is found that the thickness of the produced thin plate becomes thinner. The effect of the circumferential roll speed on the thickness of the thin plate is evident in the low roll circumferential region, where the circumferential speed is 30 m/min or less. The AZ31 thin plate manufactured by the melt drag method has a finer grain size as the thickness of the thin plate decreases, but it is currently judged that this is not the effect of cooling by the roll.

Thrust Performances of a Very Low-Power Micro-Arcjet

  • Hotaka Ashiya;Tsuyoshi Noda;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.611-616
    • /
    • 2004
  • In this study, microfabrication of a micro-arcjet nozzle with Fifth-harmonic generation Nd:YAG pulses (wavelength 213 nm) and its thrust performance tests were conducted. A micro-arcjet nozzle was machined in a 1.2 mm thick quartz plate. Sizes of the nozzle were 0.44 mm in width of the nozzle exit and constrictor diameter of 0.1 mm. For an anode, a thin film of Au (~100 nm thick) was deposited by DC discharge PVD in vacuum on divergent part of the nozzle. As for a cathode, an Au film was also coated on inner wall surface. In operational tests, a stable discharge was observed for mass flow of 1.0mg/sec, discharge current of 6 ㎃, discharge voltage of 600 V, or 3.6 W input power (specific power of 3.6 MW/kg). In this case, plenum pressure of the discharge chamber was 80 ㎪. With 3.6 W input power, thrust obtained was 1.4 mN giving specific impulse of 138 sec with thrust efficiency of 24 %.

  • PDF

Forming Tool Design of Outer Shell Structure of Nozzle Extension for Thrust Chamber (연소기 노즐확장부 외피구조물 성형치구 설계)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.271-275
    • /
    • 2010
  • Forming tool design is carried out for a manufacturing a outer shell structure of the nozzle extension of regenerative cooling thrust chamber. The method which manufactures outer shell structure of nozzle extension is a metal forming process using thin plate. Because the configuration of outer shell structure is changed after forming process by springback effect, the outer shell structure can't be exactly formed with the same forming tool as configuration of the nozzle extension. Therefore forming tool design considering springback effect is necessary for manufacturing the outer shell structure of the nozzle extension. In this study, new designed forming tool configuration was generated to decrease the errors between nozzle contour and formed structure. The analysis results show that the errors between nozzle contour and formed structure is significantly decreased using the new designed forming tool.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

Preparation and characterization of Environmental Functional Nanofibers by electrospun nanofibers-Dry sorption material for indoor CO2 capture (정전방사를 통한 환경기능성 미세섬유 제조 및 특성분석 - 실내환경 CO2 포집용 건식흡착소재)

  • Kim, Eun Joo;Park, Kyung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.938-943
    • /
    • 2018
  • Thin nano-sized fibres were prepared by an electrospinning method. The spinning appratus consisted of pump for polymer injection, nozzle and nozzle rotus, and an aluminum plate collected the polymer fibers. Its surface was chemically modified for selective improved adsorption of carbon monoxide at indoor level. The chemical activation enabled to form the fibres 250-350 nm in thickness with pore sizes distributed between 0.6 and 0.7 nm and an average specific surface area of $569m^2/g$. The adsorption capacities of pure (100%) and indoor (0.3%) $CO_2$, of which level frequently appears, at the ambient condition were improved from 1.08 and 0.013 to 2.2 and 0.144 mmol/g, respectively. It was found that the adsorption amount of $CO_2$ adsorbed by the chemically activated carbon nanofiber prepared through chemical activation would vary depending on the ratio of specific surface area and micropores. In particular, chemical interaction between adsorbent surface and gas molecules could enhance the selective capture of weak acidic $CO_2$.