• Title/Summary/Keyword: Nozzle size

Search Result 486, Processing Time 0.028 seconds

An Experimental Study on the Characteristics of Gas Burner Nozzle (가스버너의 노즐특성에 관한 실험적 연구)

  • Chung, D.H.;Kim, W.B.;Dong, S.K.
    • 한국연소학회:학술대회논문집
    • /
    • 1995.06a
    • /
    • pp.105-121
    • /
    • 1995
  • The objective of this study is to find out the design data for gas burner with an axal and radial type nozzles. The design parameters are chosen as the stabilizer type, the jet hole size of gas nozzle, the distance between gas nozzle and stabilizer, the size of stabilizer and the hole size of stabilizer, the stabilizer type with or without air swirler, the angle of swirler. For the experimental test combustor sizing ${\phi}1.3m{\times}L4.5m$ is designed and manufactured, in which the set up of power diagram, the exhaust gas analysis, blow-off test, the flame temperature and the direct photography are performed.

  • PDF

Experimental Study on the Development of Nozzle-Type Diffusers for Submersible Aeration Process (수중폭기용 노즐형 산기관 개발에 관한 실험적 연구)

  • Rhim, Dong-Ryul;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.604-608
    • /
    • 2004
  • Experimental study was conducted to increase the oxygen transfer efficiency of air diffusers in clean water. By measuring the bubble size from the bubbly two-phase flow visualization with several air diffusers the size of air bubbles near the top surface of aeration tank seems to be independent on the diffuser types. Considering design parameters for the better breakup of larger bubbles around the air diffusers, advanced conceptual air diffusers using nozzle-type throat showing the higher oxygen transfer efficiencies were made.

  • PDF

슬릿 코터 노즐의 최적 설계 및 고속도포 공정의 적용 가능성에 대한 연구

  • Kim, Tae-Min;Kim, Gwang-Seon;Kim, Gi-Un;Im, Tae-Hyeon;Jeong, Eun-Mi
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.169-173
    • /
    • 2007
  • Slit-coater nozzle is one of core equipments of coating process in LCD panel manufactory. As a glass substrate size become bigger, a nozzle performance and a high-speed coating process are considered important issues. To design the optimal nozzle, the characteristics of fluid inside nozzle are studied using CFD (Computational Fluid Dynamics) method. Through research on design factors, we can know the coating uniformity influenced by lip length, cavity angle and gap size. The future work for this study is to find the factors in high-speed coating process and function between factors of design.

  • PDF

A Study on the Characteristics of Fuel Spray (燃料噴霧特性 에 관한 硏究)

  • 진호근;이창식;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.

Experimental Investigation of Electrostatic Dripping and Atomization Mode through Non-MEMs based Nozzle Design

  • Choi, Kyung-Hyun;Dang, Hyun-Woo;Rehmani, M.A. Ali
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.13.2-13.2
    • /
    • 2009
  • Electrostatic printing either it is drop-on-demand or continuous has immense applications in non-contact printing systems such as solar cells, flexible printed circuits, RFIDs and bio applications. In this paper a laboratory manufactured nozzle has been designed for the experimental investigation of electrostatic dripping and atomization of liquid. Dripping and atomization conditions such as voltage, nozzle tip diameter, distance between counter electrode and flowrate has been indentified for the designed nozzle. Furthermore it is also demonstrated that the diameter of a generated droplet could be reduced from a significantly large size to a narrow size distribution which can be controlled by volumetric flow rate and applied voltage. This study will help in classify the conditions between different electrostatic dripping mode such as drop-on-demand formation, jet mode and finally the atomization mode based on the laboratory fabricated nozzle head.

  • PDF

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF

The Effects of Injector Nozzle Geometry and Operating Pressure Conditions on the Transient Fuel Spray Behavior

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.617-625
    • /
    • 2003
  • Effects of Injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure. and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details Inside model nozzle and real nozzle were alto investigated both experimentally and numerically. for the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.

Observations on the Near-Nozzle Behavior of an Unsteady Fuel Spray (노즐부근에서의 비정상분무 거동)

  • 구자예;정흥철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.100-111
    • /
    • 1994
  • Observations on the near-nozzle behavior of an unsteady fuel spray through single cylindrical hole nozzle were made by phase Doopler anemometer and microphotographs. At the edge of the spray, droplet velocity peaked during needle opening and closing. Droplet sizes tended to be small on the edge of spray. The near-nozzle spray angle taken from the microphotographs was time-dependent, even though it increased with gas-to-liquid density ratio as expected. The near-nozzle spray angle was the greatest on the initial stage and decreased to a relatively constant value after about one third of the total injection duration regardless of the ambient gas conditions, even in the near-vaccum condition. The wider near-nozzle spray angle in the early stage is due to the flow characteristics inside the nozzle rather than aerodynamic interactions. However, once the spray was established, aerodynamic interactions are essential in the near-nozzle atomization.

  • PDF

Preparation of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (噴霧熱分解 工程에 의한 인듐 酸化物 나노 粉末 製造)

  • Yu, Jae-Keun;Park, Si-Hyun;Sohn, Jin-Gun
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.16-25
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is prepared from the indium chloride solution by the spray pyrolysis process. The effects of the concentration of raw material solution, the nozzle tip size and the air pressure on the properties of powder were studied. As the indium concentration of the raw material solution increased from 40 g/l to 350 g/l, the average particle size of the powder gradually increased from 20 nm to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the nozzle tip size increased from 1 nm to 5 nm, the average particle size of the powder increased from 40 nm to 100 nm, the particle size distribution was much more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the air pressure increased from 0.1 kg/cm$^2$ to 0.5 kg/cm$^2$, the average particle size of the powder varies slightly upto 90~100 nm. As the air pressure increased from 1 kg/cm$^2$ to 3 kg/cm$^2$, the average particle size decreased upto 50~60 nm, the intensity of a XRD peak decreased and the specific surface area increased.