• 제목/요약/키워드: Nozzle hole diameter

검색결과 102건 처리시간 0.025초

Design and Fabrication of Electrostatic Inkjet Head using Silicon Micromachining Technology

  • Kim, Young-Min;Son, Sang-Uk;Choi, Jae-Yong;Byun, Do-Young;Lee, Suk-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권2호
    • /
    • pp.121-127
    • /
    • 2008
  • This paper presents design and fabrication of optimized geometry structure of electrostatic inkjet head. In order to verify effect of geometry shape, we simulate electric field intensity according to the head structure. The electric field strength increases linearly with increasing height of the micro nozzle. As the nozzle diameter decreases, the electric field along the periphery of the meniscus can be more concentrated. We design and fabricate the electrostatic inkjet heads, hole type and pole type, with optimized structure. It was fabricated using thick-thermal oxidation and silicon micromachining technique such as the deep reactive ion etching (DRIE) and chemical wet etching process. It is verified experimentally that the use of the MEMS inkjet head allows a stable and sustainable micro-dripping mode of droplet ejection. A stable micro dripping mode of ejection is observed under the voltages 2.5 kV and droplet diameter is $10\;{\mu}m$.

기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정 (Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump)

  • 조승환;유승헌;이범호;김동현;이대엽
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

원전 증기발생기 감육 급수링 응력해석 (A Stress Analysis of Wall-Thinned Feedwater Ring in Nuclear Power Plant)

  • 조민기;조기현
    • 한국압력기기공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.56-63
    • /
    • 2021
  • The feedwater ring is an assembly in steam generator internal piping, which distributes feedwater into the secondary side of the steam generator. It consists of an assembly of carbon steel piping, pipe fittings and J-nozzles which are inserted into the top of the feedwater ring and welded to the diameter of the ring. The feedwater ring at the attachment region of the J-nozzle may be susceptible to flow accelerated corrosion (FAC) due to flow turbulence which increases local fluid velocities. If a J-nozzle becomes a loose part, it can cause damage to tubing near the tube sheet. In this paper, the structural stress analysis for a wall thinned feedwater ring and integrity evaluations under assumed loading conditions are carried out in compliance with ASME B&PV SecIII, NB-3200.

커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입 (Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System)

  • 공장식;최욱;배충식;강진석
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

원통으로 보강된 평판의 응력해석 (Stress analysis near a circular hole in a flat plate reinforced by a cylinder)

  • 정인승;이대희;이완익;윤갑영
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.800-809
    • /
    • 1987
  • 본 연구에서는 원통에 대하여는 Donnel 식과 Flugge식을 사용하여 원통의 유 한길이에 대한 일반적인 해를 구하였고, 평판에 대하여는 막이론과 굽힘이론을 사용하 여 일반해를 구한 후 중첩하였다. 평판과 원통에 발생하는 미정력계를 구하기 위하 여 가장 합리적이라고 생각되는 접합부에 모든 미정력계가 집중하여 작용한다고 가정 하고, 이 부분에서 평판과 원통의 각각에 대한 하중, 모우멘트, 기울기, 변위 등이 연 속하도록 접한조건식을 세웠다.그리고 이론해석의 타당성을 알아보기 위하여 S 45C 강재로 플러시타잎의 모델을 제작하여 실험을 행하였다.

Urea-SCR에 적용되는 이유체 노즐의 분무특성에 관한 실험적 연구 (Experimental Study on Spray Characteristics of Twin Fluid Nozzle in Urea-SCR)

  • 박형선;홍정구
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.96-102
    • /
    • 2017
  • In order to reduce the NOx, SCR technology is most suitable. In this study, we focused on studying the injector part of urea-SCR system. When stoichiometric 1 mole of urea is injected, 2 moles of $NH_3$ are created. $NH_3$ causes a SCR reaction by reacting with NOx. However, urea is decomposed by the side reaction of coming out HNCO, deposit formation is formed. In this study, it was to design a nozzle that can spray the optimal spray flow rate. Test nozzle used in this experiment is efferverscent type. The result of the experiment, liquid flow rate was confirmed to be that they are dominated by the exit orifice diameter. The area ratio is defined by ratio of the area of exit orifice hole and that of aerorator. The droplet size was measured by varying the area ratios. In addition, it was also confirmed that there is no change of the liquid flow rate and air flow rate to change the aerorator at the same exit orifice. Further, It was confirmed that the droplet size was relatively uniform even though the area ratio was different. Finally, there is little change in the SMD that air flow rate increases in 0.3 or more ALR.

분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향 (The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion)

  • 국상훈;공장식;박세익;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화 (Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles)

  • 정용진;장진영;배충식
    • 한국분무공학회지
    • /
    • 제29권1호
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

연속 살균기의 온도제어 및 최적설계에 관한 연구 (Study on Temperature Control and Optimal Design for Continuous Sterilizer)

  • 박철재
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.813-821
    • /
    • 2015
  • 본 논문에서는 배치식 살균기의 문제점을 분석하여 연속 살균기를 모델링하고 설계하였으며 온도편차를 제어하였다. 살균기의 노즐 직경, 홀 직경, 노즐 길이 등의 설계 파라미터를 이용하여 온도를 해석하였다. 살균기의 온도편차에 중요한 노즐 직경, 제트박스의 직경, 노즐의 홀 피치 등의 설계 파라미터를 반응표면분석법에 의하여 최적화하였다. 그리고 본 연구에서 제안한 설계 파라미터를 이용하여 살균기의 실험장치를 개발하여 온라인으로 테스트를 실시하였다. 온라인 테스트 결과 목표온도까지 상승하는데 약 7.3 min 소요되었고 온도편차는 약 $0.84^{\circ}C$로 양호하였으며 해석적으로 최적화를 실시한 결과와 동일한 최적조건을 도출하였다.

아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성 (Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream)

  • 이인철;조우진;이봉수;김종현;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF