• Title/Summary/Keyword: Nozzle flow model

Search Result 375, Processing Time 0.029 seconds

Characteristics of Side force using Jet Vanes in a Shroud (Shroud로 감싸있는 제트 베인의 측력 특성)

  • Sung, Hong-Gye;Hwang, Yong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.84-91
    • /
    • 2002
  • Thrust vector characteristics of jet vanes installed in a shroud are very unique and much more complicated than those of the jet vane acting without any shroud by the fact of additional physical phenomena. The fluid dynamic interferences induced by jet vanes and shroud as well as jet vane's aerodynamic performance are investigated to characterize thrust vector control by semi-empirical model, three dimensional numerical analysis including real complex geometry, and ground firing test of real motors.

Theoretical Analysis of Steady State Low Current Arcs in Dual Flow Nozzles

  • Song, K.D.;Shin, Y.J.;Lee, H.S.;Kim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.952-957
    • /
    • 1992
  • When the circuit-breaker switches off, an electric arc is established between the contacts. It is very important to understand the arc characteristics for the design of a circuit breaker. This article describes the theoretical analysis of the arc characteristics by means of energy integral method when convection dominated low current arcs are produced in the dual-airflow nozzle of a model interrupter. In order to investigate the arc radius, the average electric field strength and the arc voltage, the arc column is divided into two regions, and then the energy conservation equation is applied to the arc in each region together with the axial cold flow mass flux function, steady-state mass balance equation and Ohm's law. The results show good agreements with those of other researchers.

  • PDF

Comparison of FDDO and DSMC Methods in the Analysis of Expanding Rarefied Flows (팽창희박류의 분석에 있어서 FDDO와 직접모사법의 비교)

  • Chung C. H.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.142-149
    • /
    • 1996
  • 이차원 노즐을 통하여 저밀도 환경으로 팽창하는 희박류의 분석에 있어서 불연속좌표법과 결합된 유한차분법(finite-difference method coupled with the discrete-ordinate method, FDDO)과 직접모사법(direct-simulation Monte-Carlo method, DSMC)이 비교되었다. FDDO를 이용한 분석에서는 충돌적분모델을 도입하여 간단해진 볼츠만식(Boltzmann equation)이 불연속좌표법을 이용하여 물리적 공간에서는 연속이나 분자속도 공간에서는 불연속좌표로 표시되는 편미분방정식군으로 변환되어 유한차분법에의하여 수치해석 되었다. 직접모사법에서는 분자모델로 가변강구모델(variable hard sphere model, VHS)이, 충돌샘플링모델로는 비시계수법(no time counter method, NTC)이 채택되었다. 전혀 다른 두 가지 방법에 의한 노즐 내부에서의 유체흐름 해석결과는 매우 잘 일치하였으며, 노즐 외부의 plume 영역에서는 FDDO에 의한 해석결과가 직접모사법에 의한 해석결과에 비하여 약간 느린 팽창을 보였다.

  • PDF

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.

Effects of Hole Drilling Angle on Internal Flow of Gasoline Direct Injection Injector (Hole drilling angle이 가솔린 직접 분사식 인젝터의 내부 유동에 미치는 영향)

  • Kim, Huijun;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.197-203
    • /
    • 2021
  • In gasoline direct injection injectors, cavitation can be generated inside the hole because of their high injection pressure. In this paper, the effects of cavitation development in injector were investigated depending on the various hole drilling angles were investigated by a numerical method. In order to verify the internal flow model, injection rate and injection quantity of individual holes were measured. The BOSCH long tube method was used to measure the injection rate. As a result, even if the hole diameters were the same, the discharge coefficient differed by up to 10% depending on the hole angle. Moreover, if the hole drilling angle became greater than 30°, the area coefficient and the discharge coefficient decreased as the nozzle outlet was blocked due to cavitation.

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyu-Bok;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.807-812
    • /
    • 2011
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyubok;Kim, Jong-Gyu;Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

Quantification of Realistic Discharge Coefficients for the Critical Flow Model of RELAP5/MOD3/KAERl (RELAP5 / MOD3/ KAERI의 임계유동모델을 위한 실제적 배출계수의 정량화)

  • Kwon, T.S.;Chung, B.D.;Lee, W.J.;Lee, N.H.;Huh, J.Y.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.701-709
    • /
    • 1995
  • The realistic discharge coefficient for the critical How model of RELAP5/AOD3/KAERI are determined for the subcooled and too-phase critical flow by assessments of nine MARVIKEN Critical flew Test(CFT). The selected test runs include a high initial subcooling and large nozzle aspect rat-io(L/D). The code assessment results show that RELAP5/MOD3/KAERI over-predicts the subcooled critical flow and under-predicts the two-phase critical flow. Using these result, the realistic discharge coefficients of critical flow models are quantified by an iterative method. The realistic discharge coefficients are determined to be 0.89 for the subcooled critical How and 1.07 for the two-phase critical flow, and the associated standard deviations are 0.0349 and 0.1189, respectively. The results obtained from this study can be applied to calculate the realistic system response of Large Break Loss of Coolant Accident and to evaluate the realistic Emergency Core Cooling System performance.

  • PDF

A Numerical Study on the Internal Flow Characteristics and Pumping Performance of a Piezoelectric-based Micropump with Electromagnetic Resistance (전자기 저항을 이용한 압전 구동방식 마이크로 펌프의 내부유동 특성과 펌핑성능에 대한 수치해석적 연구)

  • An, Yong-Jun;Oh, Se-Hong;Kim, Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.84-92
    • /
    • 2010
  • In this study a numerical analysis has been conducted for the flow characteristics and pumping performance of a piezoelectric-based micropump with electromagnetic resistance exerted on electrically conducting fluid. Here, electromagnetic resistance is alternately applied at the inlet and outlet with alternately applied magnetic fields in association with the reciprocal membrane motion of the piezoelectric-based micropump. A model of Prescribed Deformation is used for the description of the membrane motion. The internal flow characteristics and pumping performance are investigated with the variation of magnetic flux density, tube size, displacement of membrane and the frequency of the membrane. It turns out that the current micropump has a wide range of pumping flow rate compared with diffuser-nozzle based micropumps.

Numerical Analysis of Partial Cavitaing Flow Past Axisymmetric Cylinders (축대칭 실린더형상 주위 부분공동 유동의 전산해석)

  • Kim, Bong-Su;Lee, Byung-Woo;Park, Warn-Gyu;Jung, Chul-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many hydraulic engineering systems, such as pump, turbine, nozzle, injector, etc. In the present work, a solver for cavitating flow has been developed and applied to simulate the flows past axisymmetric cylinders. Governing equations are the two-phase Navier-Stokes equations, comprised of continuity equation of liquid and vapor phase. The momentum equation is in the mixture phase. The solver employed an implicit, dual time, preconditioned algorithm in curvilinear coordinates. Computations were carried out for three axisymmetric cylinders: hemispherical, ogive, and caliber-0 forebody shape. Then, the present calculations were compared with experiments and other numerical results to validate the present solver. Also, the code has shown its capability to accurately simulate the re-entrant jet phenomena and ventilated cavitation. Hence, it has been found that the present numerical code has successfully accounted for cavitating flows past axisymmetric cylinders.