• Title/Summary/Keyword: Nozzle flow model

Search Result 373, Processing Time 0.022 seconds

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.

Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow (큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향)

  • Heo, Junyoung;Jung, Junyoung;Sung, Hong-Gye;Yang, June-Seo;Lee, Ji-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulent models suitable for large scale separation flows perturbed by a pintle strokes. Two-equation turbulence models, the low Reynolds k-${\varepsilon}$ and the k-${\omega}$ SST models with or without compressibility correction proposed by Wilcox and Sarkar are evaluated. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. Mach disk location and pressure recovery profiles in flow separation region are noticeably distinct between turbulent models of k-${\varepsilon}$ and k-${\omega}$ SST. The compressible effect corrections to those models improve resolving of separation flow behaviors. The compressibility corrections to k-${\varepsilon}$ model have provided very comparable results with test data.

The Pumping Characteristics of the Valveless Peristaltic Micropump by the Variation of Design Parameters

  • Chang, In-Bae;Park, Dae-Seob;Kim, Byeng-Hee;Kim, Heon-Young
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • This paper presents the fabrication and performance inspection of a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of base plate, mid plate, top plate and connection tubes fur inlet and outlet. In detail, the base plate is composed of two diffuser nozzles and three chambers, the mid plate consists of a glass diaphragm for the volumetric change of the pumping chamber. The inlet and outlet tubes are connected at the top plate and the actuator fur pressing the diaphragm is located beneath the top plate. The micropump is fabricated on the silicon wafer by DRIE (Deep Reactive ion Etching) process. The pumping performances are tested by the pneumatic test rig and compared with the simulated results fur various dimensions of diffuser nozzles. The pumping characteristics of the micropump by the volumetric change at the pumping chamber is modeled and simulated by the commercial software of FLOW-3D. The simulated results shows that reverse flow is the inherent phenomena in the diffuser nozzle type micropump, but it can be reduced at the dual pumping chamber model.

Determination of mass flow rate, jet temperature and heating time in mold surface heating technology using hot jet impingement (고온제트에 의한 금형표면 가열기법에서의 유량, 온도, 가열시간의 결정)

  • Choi, Sung-Ju;Yoo, Young-Eun;Kim, Sun-Kyoung
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.135-139
    • /
    • 2008
  • Development of surface heating technology using hot jet impingement onto mold inner surface for improvement of pattern transcription. This study is focused on how to control the parameters related to hot jet impingement. The mass flow rate, the jet temperature and the duration of the impingement are major parameters. The nozzle design and other geometric configurations also affect the heat transfer to the surface. In terms of heat transfer analysis, the most important number is the heat transfer coefficient, which is influenced by the mass flow rate, nozzle design, distance between the nozzle tip and the surface. In summary, several parametric studies using the developed model are conducted to investigate the effects of mass flow rate, jet temperature and Heating Time in Surface heating technology using hot jet impingement onto mold.

  • PDF

Analysis of the ejector for low-pressure evaporative desalination system using solar energy (태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석)

  • Hwang, In-Seon;Joo, Hong-Jin;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

The evaluative study of window defrost using Computational Fluid Dynamics (CFD를 이용한 Window Defrosting 평가)

  • Lee, I.S.;Im, H.N;Choi, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.179-182
    • /
    • 2011
  • The purpose of this study is to evaluate a defrost model for the possibility of defrosting on wheelhouse window and the heat capacity if defrosting nozzle by using the commercial CFD solver FLUENT. A detailed simulation model has been created which contains the defrosting nozzle, window and the interior/exterior forced convection boundary. In this numerical study, the heat and mass transfer coupled during defrosting and investigated the defrost time for different hot gas temperature, external wind speed and temperature condition.

  • PDF

Investigation of the 2D Convergent-Divergent Thrust Vectoring Nozzle (2D 추력편향 노즐 성능 및 유동 해석)

  • Kim, Yoon-Hee;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.483-486
    • /
    • 2009
  • An investigation of the thrust vectoring nozzle which can be applied to the supersonic variable exhaust system was performed. The maximum mach number of the model aircraft is 1.8 and mission radius is about 400Nm. The cycle analysis are performed at each operating regime of the aircraft and the specifications of the thrust vectoring nozzle were developed. Based upon the requirement of the thrust vectoring nozzle, two dimensional thrust vectoring nozzle were designed and flow analysis was conducted by deflection of the pitch and yaw angle.

  • PDF

Analysis of Performance of Turbine Exhaust Nozzle for Liquid Rocket Engine (액체로켓엔진의 터빈 배기노즐 성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.316-319
    • /
    • 2008
  • A computational analysis has been conducted on the compressible flow in the turbine exhaust nozzle of the gas generator cycle liquid rocket engine. The commercial CFD code Fluent has been used. Four nozzle designs have been compared to select the turbine exhaust nozzle concept. Three candidates with single nozzle have comparable performance. The model with bifurcated nozzles shows significant performance loss. However it will be better in the view of balanced thrust distribution because of its symmetric geometry.

  • PDF

Temperature field measurement and CFD analysis of a jet impinging on a concave surface depending on changes in nozzle to surface distance and the diameter of a circular nozzle (원형 노즐의 직경 변화 및 표면으로 부터의 거리변화에 따른 오목한 표면에 충돌하는 제트의 온도장 측정 및 CFD해석)

  • Yeongmin Jo;Yujin Im;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2023
  • The characteristic of jet impinging on the concave surface were analyzed through thermographic phosphor thermometry (TPT) and numerical investigation. Under a jet Reynolds number of 6600, nozzle diameters and nozzle-to-surface distances (H/d) were changed 5mm and 10mm and H/d=2 and 5. The RNG k-ε turbulence model can accurately predict the distribution of Nusselt number, compared to other models (SST k-ω, realizable k-ε). Heat transfer characteristics varied with the nozzle diameter and H/d, with a secondary peak noted at H/d =2, due to vortex-induced flow detachment and reattachment. An increase in nozzle diameter enhanced jet momentum, turbulence strength, and heat transfer.

Flow Characteristics of Photo Resist in a Slit-Coater Nozzle (Slit-Coater 노즐에서 Photo Resist의 유동 특성)

  • 김장우
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.37-40
    • /
    • 2004
  • This study presents numerical solutions of three-dimensional laminar flow-field formed by photo resist flow in a slit-coater model. We discuss on the governing equations, laminar viscosities and the computational model applied in our numerical calculation and some results. We prove that the structure of tapered-cavity aid to make uniform pressure-field and boundary effect is an important problem to improve coating uniformity. In view of uniformity improvement, it is necessary to study for the structure of cavity and flow path.

  • PDF