• Title/Summary/Keyword: Nozzle flow model

Search Result 373, Processing Time 0.024 seconds

Visualization of the Flow in a Diesel Injection Nozzle In case of the Steady Flow Condition (정상류 조건에서의 디젤 연료 분사 노즐내의 유동가시화)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.49-56
    • /
    • 1999
  • The effects of the internal flow in a D.I. Diesel injection nozzle on the atomization of a spray were analyzed experimentally. Flow visualization studies were made using a transparent acrylic model nozzle as a diesel nozzle . Water instead of disel fuel was used as the injection liquid. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole that was the same as the actual nozzle. Experimental results show that when the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray plume large. Cavitation, which arose from the sac chamber, makes the spread angle of the spray plume large but the discharge coefficient small.

  • PDF

Effect of the Pressure and the Flow Pattern in a Sac Chamber of a Diesel Injection Nozzle on the Issued Spray Behaviors (디젤 연료분사노즐 색크실내의 압력과 유동패턴이 분류의 분열거동에 미치는 영향)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of the internal flow in a diesel injection nozzle on the atomization of the spray has been investigated experimentally. Flow visualization was made using a transparent acrylic model nozzle. And also, measurement of the sac chamber pressure was made for clartfying the effect of pressure fluctuation in the sac chamber on the wpray behaviors. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as the actual nozzle. Polystyrene tracers, a laser sheet light and a still/high speed video camera were used to visualize the flow pattern in the sac chamber. When the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray large. Cavitation which arose in the sky chamber induced the pressure fluctuation and then affects the spread angle of the spray.

  • PDF

A Study on the Flow Characteristics of the Spray Nozzle (관창의 유동특성에 관한 연구)

  • 이동명
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2003
  • This study established analysis theory for flow characteristics prediction of the spray nozzle and predicted discharge and discharge type of the spray nozzle from numerical analysis. It could know that discharge type of the spray nozzle from prediction data determine to position of nozzle and needle, and flow characteristics prediction of the spray nozzle could know that the characteristics according to shape of nozzle and needle is decided. New model of the spray nozzle that can maximize efficiency of fire suppression from flow characteristics and prediction data of the spray nozzle is presented. The result of this study utilize to data necessary to develop new model of the spray nozzle. Also the result of this study wish to contribute to resource technology security of the spray nozzle, technique ripple effect enlargement of same kind industry and technical development activation of fire protection field etc.

Integrated CFD on Atomization Process of Lateral Flow in Injector Nozzle

  • Ishimoto, Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.7-8
    • /
    • 2006
  • The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (pl/ pg = 554) conditions conditions by using our numerical method.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

Influence of guide vane shape on the performance and internal flow of a cross flow wind turbine

  • Son, Sung-Woo;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.163-169
    • /
    • 2013
  • In order to make the vertical-axis cross flow wind turbine commercially feasible, a guide vane is adopted and the effect of the guide vane shape is examined in order to improve the wind turbine performance. CFD analysis on the performance and internal flow of the turbine is carried out for the wind turbine model. The result shows that when the guide nozzle is installed, almost over two times of power coefficient are achieved in comparison with the case of no guide nozzle installation. The guide nozzle acts as a role of suppressing the flow resistance at the blade passage, which is found when the guide nozzle is installed. Moreover, in this study, two kinds of the guide vane with a straight type and a curved type are adopted and compared. The curved guide vane nozzle produces higher power coefficient in comparison with that of straight guide vane nozzle.

Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine (전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델)

  • Kim, Ill-Soo;Park, Chang-Eun;Jeung, Young-Jae;Son, Joon-Sik;Nam, Ki-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

Injection Flow Rate Improvement of Injectors for DME Common-rail Systems (DME 커먼레일 시스템을 위한 인젝터 분사 유량 개선)

  • Lee, G.S.;Shin, S.S.;Park, J.H.
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • In this study, injection flow rates and material of the solenoid sealing of the injectors were improved for the development of a di-methyl Ether(DME) common-rail system. To deliver the same amount of energy provided by injection pressure of diesel $P_{inj}$ = 160 MPa, the DME injectors need to have larger diameter of nozzle hole and more No. of hole at low injection pressure of $P_{inj}$ = 40~50 MPa. The simplified nozzle flow model, which takes account of nozzle geometry and injection condition, was employed in order to design the concept of a injector nozzle such as No. of hole, diameter of hole and diameter of needle seat, etc. Injection amount and rate were tested by diesel and DME test stand. As a result, the diameter of nozzle hole were enlarged by 0.25 mm. The diameter of the orifice in the high pressure line was increased by 1.0 mm to maintain hydraulic force in the nozzle. The material of the solenoid sealing was changed to HNBR, which was strong against the corrosive. Experimental results showed that the injection amount of the DME injector drastically increased by 191.9% comparison to that of diesel at $P_{inj}$ = 40 MPa.

Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change (Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구)

  • Hwang, Jun Hwan;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

Analysis of the micro diffuser/nozzle pump performance of steady states using similitude model and simulations (상사 모델과 전산 수치 해석을 이용한 diffuser/nozzle pump 의 정상 상태에 대한 연구)

  • Park, Sung-Hoon;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2763-2768
    • /
    • 2007
  • Recently, as the semiconductor production technology develops, there has been growing interest in the cooling system using micro fluid pump. Among the various types of micro fluid pump, the valve-less diffuser/nozzle has been extensively studied in recent years. However, the flat-walled diffuser/nozzle flow has not been clearly looked into due to its non-linear characteristics. In this paper, the flow characteristics of the flat-walled diffuser/nozzle have been analyzed using similitude model and simulations. Similitude models are designed so that the flow pattern is same as that of 1/10 scale flow by using high viscous fluid as working fluid. The results are compared to the simulations. It is shown that the flow characteristics of 2D simulation are different from 3D simulations at high Re region, and the measured pump efficiency is highly dependent on the pressure difference as well as the channel geometry. From these results, the desirable conditions for the efficient pump is discussed.

  • PDF