• Title/Summary/Keyword: Nozzle flow

Search Result 1,829, Processing Time 0.023 seconds

Linear Stability Analysis of a Baffled Rocket Combustor (배플이 장착된 로켓 연소기의 선형 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion (액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

Thermal Transient Response of a PWR Pressurizer Vessel Wall for the Inadvertent Auxiliary Spray Transient (PWR 가압기에서 오동작 보조살수 과도시 용기벽의 열적 과도응답)

  • Jo, Jong-Chull;Lee, Sang-Kyoon;Shin, Won-Ky;Cho, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.183-199
    • /
    • 1991
  • Transient response of temperature distributions in a Pressurized Water Reactor (PWR) pressurizer vessel wall for the Inadvertent Auxiliary Spray transient has been analyzed with conservatism accounted for the resulting thermal stresses in the regions of the vessel wall which are wetted by the spray water droplets. In order to determine the forced convective heat transfer coefficient at the inner boundary surface of vessel wall where the droplets impinge on and flow down, the transient temperatures of spray droplets when they reach the inner surface of the vessel wall after travelling from the spray nozzle through the pressurizer interior space occupied with the saturated steam-noncondensable hydrogen gas mixture have been predicted. The transient temperature distributions in the vessel wall have been obtained by using the finite element method, and the typical results have been provided. It has been shown that the results of thermal analysis are consistent with representation of the input transient and have plausible physical meaning.

  • PDF

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn Chae Hoon;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2005
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. With the sample rocket plume, the averaged radiative heat flux reaching the base plane is calculated about 5 kw/m$^{2}$ at the flight altitude of 10.9 km. This value is small compared with radiative heat flux caused by constant-temperature (1500 K) plume emission, but it is not negligibly small. At higher. altitude (29.8km), view factor between the base plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000 K due to convective heat transfer.

The Application of CFD for the Duct System Design of CRW aircraft (CRW 비행체 덕트 시스템 설계를 위한 CFD의 활용)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.200-205
    • /
    • 2003
  • The Canard rotor/wing (CRW) aircraft concepts offer great potential for application by allowing the use of a common propulsion system for high-speed cruise and low-speed powered lift. Using the rotor for lift in both flight modes increases its utility. In the hovering mode, the exhausted gas from an gas turbine engine is accelerated through the duct system and it provides the tipjet power for rotor system enough to lift the aircraft. In the cruise mode, the rotor is fixed and the exhausted gas is extracted through the main nozzle, such that the aircraft is able to flight with high speed. The duct system was designed using 1-D fanno line flow theory and empirical data. However, the empirical data of the pressure loss coefficient for various bending and dividing ducts were not enough to design our duct system adaptively. Therefore, using 3-D CFD analysis we obtained the pressure loss coefficient for our duct models and chose the appropriate bending or diving duct type. In this paper, we used the CFD-ACE+ software package for the CFD analysis and the modeling of duct system. Through the 3-D CFD analysis, we investigated also the pressure loss and the velocity distributions of the designed whole duct system as well as the blade duct. Comparing the 3-D CFD result with 1-D analysis result, we lessened the uncertainty of the designed duct system and speculated the problem that was not concerned in design state.

  • PDF

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.

Dust collection system optimization with air blowing and dust suction module (에어 블로어와 흡입기능을 가진 미세먼지 흡입시스템의 최적화)

  • Jeong, Wootae;Kwon, Soon-Bark;Ko, Sangwon;Park, Duckshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.290-297
    • /
    • 2016
  • The performance of track cleaning trains to remove accumulated fine particulate matter in subway tunnels depends on the design of the suction system equipped under the train. To increase the efficiency of the suction system under the cleaning vehicle, this paper proposes a novel dust suction module equipped with both air blowing nozzles and a dust suction structure. Computational Fluid Dynamics (CFD) analysis with turbulent flow was conducted to optimize the dust suction system with a particle intake and blowing function. The optimal angle of the air blowing nozzle to maximize the dust removal rate was found to be 6 degrees. The performance of the track cleaning vehicle can be increased by at least 10 percent under an operation speed of 5km/h.

He Study of Fire Suppression Capability of Low Pressure Water-Mist System for Wooden Cultural Properties (목조한옥에 대한 저압식 미분무 소화설비의 소화성능에 관한 연구)

  • Roh, Sam-Kew;Kim, Dong-Cheol;Ham Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2012
  • The study verified the extinguishing performance of the low pressure water-mist system, which is used to extinguish fire at domestic wooden architecture, through a fire test. Made of inflammable materials, a wooden house is vulnerable to fire, and the size of fire may vary from the early stage in case of arson. With the discharging pressure of 8 bar and the flow rate of 35 lpm, the low pressure water-mist nozzle used in the experiment has considerable discharging amount compared to other water-mist nozzles. The extinguishing performance was tested based on the size of fire and architecture. Test results demonstrated that the extinguishing performance was not affected by the size of a house, but decreased significantly when the size of fire was above unit 1. Taking into account that the environment of actual wooden cultural properties is more vulnerable than that of the experiment model, sufficient investigation on extinguishing performance is required to apply the water-mist extinguishing system to wooden architecture.

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.