• Title/Summary/Keyword: Nozzle flow

Search Result 1,830, Processing Time 0.031 seconds

Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface (표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정)

  • Lee, Dae Hee;Won, Se Youl;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.

3-D Numerical Study on a Oblique Jet Impingement for Fluid flows and Heat Transfer Characteristics Using ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ Model (${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ 모델을 이용한 경사진 충돌제트의 유동장 및 열전달 특성에 대한 3차원 수치해석적 연구)

  • Choi, Bong-Jun;Lee, Jung-Hee;Choi, Young-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.789-794
    • /
    • 2000
  • The Paper studies the flow and heat transfer characteristics to a jet impinging at different oblique angles, to a plane surface by numerical methods. The flowfield and heat transfer rate associated with the oblique Impingement of an axisymmetric jet are of interest as a result of its presence in numerous technological Problems. For the computation of heat transfer rate, the standard ${\kappa}-{\varepsilon}$ and ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ turbulent model were adapted. The accuracy of the numerical calculations was compared with various experimental data reported in the literature. ${\kappa}-{\varepsilon}-\bar {{\upsilon}'^ 2}$ model showed better agreement with experimental data than standard ${\kappa}-{\varepsilon}$ model in prediction of the turbulent intensity and the heat transfer rate. In the case of computation of flowfield, the study carries on the ${\alpha}=45$ deg, h/D=4.95. The jet Reynolds number based on the nozzle diameter(D), was 48,000. For the computation of heat transfer rate, the Re=20,000, the jet orifice-to-plate spacings(L/D) are 4, 6 and 10, and the angle between the axis of the jet orifice and the plate surface is set at 30, 45, 60, or 90 deg. For the smaller spacings, the near-peak Nusselt numbers are not significantly effected by the initial decreases in the Jet angle. The overall shape of the local Nusselt number x-axis profile is influenced by both the jet orifice-to-plate spacing and the jet angle.

  • PDF

Experimental Study on Unsteady-state Characteristics of a Pintle Thruster with Variable Pintle Speeds (핀틀 구동속도에 따른 핀틀 추력기의 비정상상태 특성에 대한 실험적 연구)

  • Hwang, Heuiseong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.247-255
    • /
    • 2016
  • The purpose of this study is to investigate unsteady-state characteristics of a pintle thruster with various pintle speed. Based on steady state experimental results, non-linear pintle stroke equation is obtained and applied to the unsteady state experimental system. For the unsteady state experiments, three different pintle speeds are used: 3.10 mm/s, 5.65 mm/s, 10.83 mm/s, respectively. Results show that backward pintle stroke results in faster convergence time because of high chamber pressure during backward pintle stroke sequence. During the forward and backward process, thrust curve shows singular points. These phenomenons is caused by variation of mass flow rate, which is mainly due to changes of both chamber pressures and nozzle throat area. This behavior becomes distinctive for a faster pintle speed case.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.

A Study on Performance of Water Curtain Nozzles for Protection of Wooden Cultural Properties from Forest Fire (산불로부터 목조문화재 보호를 위한 수막노즐의 성능에 관한 연구)

  • Kim, Kyoung-Jin;Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.8-13
    • /
    • 2012
  • This study suggests the water curtain nozzles as the way to protect important wooden cultural properties from an adjacent building fire or a forest fire. They are designed to block off the pyrolysis of timbers which occurs at $200{\sim}250^{\circ}C$ by forming a water curtain with the flow of water that spouts over a certain pressure from the bottom. The existing water curtain nozzles installed at the following sites were examined: NakSan-sa (Temple) in Gangwon-do (Province) and in Muwisa (Temple) in Jeollanam-do (South Province). As a way to improve and complement the system, this study designed nozzles with covers in order not to disrupt the landscape. Connected pipes are elevated and jet water when they are in use. Possible ways to install the connected elevating pipes to jet water effectively were investigated.

Optimal Design of Clearance in Fuel Injection Pump (연료분사펌프의 최적 간극 설계)

  • Hong, Sung-Ho;Lee, Bora;Cho, Yongjoo;Park, Jong Kuk
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.148-156
    • /
    • 2015
  • In the study, a design process for ensuring optimal clearance in a fuel injection pump(FIP) is suggested. Structure analysis and hydrodynamic lubrication analysis are performed to determine the optimal clearance. The FIP is simulated using Hypermesh, Abaqus 6.12 to evaluate the reduction of clearance when the maximum supply pressure is applied. The reduction in clearance is caused by the difference in the deformations between the barrel and plunger. When the deformation of the plunger is larger than that of the barrel, a reduction in clearance at the head part occurs. On the other hand, the maximum clearance reduction equals the maximum deformation in the stem part, because the deformation of barrel does not occur in this region. The clearance of FIP should be designed to be larger than maximum reduction of clearance in order to avoid contact between the plunger and barrel. In addition, the two-dimensional Reynolds equation is used to evaluate lubrication characteristics with variations of viscosity, clearance and nozzle for a laminar, incompressible, unsteady state flow. The equation is discretized using the finite difference method. The lubrication characteristics of FIP are investigated by comparing film parameter, which is the ratio of the minimum film thickness and surface roughness. The optimal clearance of FIP is to be designed by considering the maximum reduction in clearance, lubrication characteristics, machining limits and tolerance of clearance.

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

A Sudden Increase in Combustion Pressure of Gas Generator of Ducted Rocket by Thermal Choking (열 질식에 의한 덕티드 로켓 가스 발생기의 연소 압력 상승)

  • Kim, Doyeong;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.684-691
    • /
    • 2015
  • A sudden increase in combustion pressure is observed in the ducted rocket combustion test equipped with pipe shaped and converging nozzle exhaust tubes. This study aims to understand the physical mechanism of abrupt change in combustion pressure using thermal choking in the exhaust tube. Results confirmed that the thermal choking of the flow inside the exhaust tube was responsible for the sudden increase in combustion pressure. Also, high pressure exponent of solid propellants is critical sensitive to the occurrence of thermal choking exhaust pipe. Additionally, numerical simulation showed that the sudden increase in combustion pressure was less possible in diverging pipe because thermal choking is more reluctant to occur.

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

1-D Model to Estimate Injection Rate for Diesel Injector using AMESim (디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축)

  • Lee, Jinwoo;Kim, Jaeheun;Kim, Kihyun;Moon, Seoksu;Kang, Jinsuk;Han, Sangwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.