• Title/Summary/Keyword: Nozzle flow

Search Result 1,830, Processing Time 0.032 seconds

A Numerical Study on Performance Characteristics of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 성능 특성에 대한 수치적 연구)

  • Jeong, Bong-Goo;Yim, Kyung-Jin;Jo, Seong-Hwi;Kim, Hong-Jip;Jeon, Jun-Soo;Ko, Young-Sung;Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.570-573
    • /
    • 2012
  • Performance characteristics of subscale diffuser for high-altitude simulation have been numerically investigated. The length of diffuser entrance with respect to nozzle exit diameter was changed to 0, 50, 100%, respectively. In addition, flow characteristics have been studied for various length to diameter ratio of secondary throat diffuser. As a result, the shape of plume was contracted for insufficient length of diffuser entrance. Also, if the length to diameter ratio of secondary throat diffuser were less than 7 or 8, mach disk has been formed inside the diffuser.

  • PDF

An Experimental Study on Wafer Demounting by Water Jet in a Waxless Silicon Wafer Mounting System

  • Kim, Kyoung-Jin;Kwak, Ho-Sang;Park, Kyoung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.31-35
    • /
    • 2009
  • In the silicon wafer polishing process, the mounting stage of silicon wafer on the ceramic carrier block has been using the polishing template which utilizes the porous surface instead of traditional wax mounting method. Here in this article, the experimental study is carried out in order to study the wafer demounting by water jet and the effects of operating conditions such as the water jet flowrate and the number of water jet nozzles on the wafer demounting time. It is found that the measured wafer demounting time is inversely proportional to the water flowrate per nozzle, regardless of number of nozzles used; implying that the stagnation pressure by the water jet impingement is the dominant key factor. Additionally, by using the transparent disk instead of wafer, the air bubble formation and growth is observed under the disk, making the passage of water flow, and subsequently demounting the wafer from the porous pad.

  • PDF

IoT Basic Study on Development of Duct Burner Integrated with SCR Catalyst (SCR 촉매 일체형 덕트 버너 개발에 대한 IoT 기초연구)

  • Jang, Sung-Cheol;Shim, Yo-Seop
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2021
  • Since the optimization of the diesel engine for the ship cannot satisfy the NOx emission limit by the method of reducing the NOx emission, it is necessary to reduce the NOx by post-processing the exhaust gas. In this study, we will review the feasibility of designing a binary nozzle and mixing chamber duct for effectively converting the number of elements into NH3 in the oil burner for the SCR catalyst unit integrated duct in the ship under development through the computational heat flow analysis for the velocity distribution and temperature distribution.

Study on Micro-bubble Generation Characteristics in Venturi Cavitation using Laser Diffractometer (레이저 회절 측정기를 이용한 벤츄리 캐비테이션에서의 마이크로버블 발생 특성 연구)

  • Lim, Yun Gyu;Yang, Hae Jeong;Kim, Yung Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The use of micro bubbles in industrial fields has been increasing in the recent years., particularly micro-bubble sterilization and water purification effects. Various methods have been developed for the generation of micro-bubbles. Depending on the method of generating bubbles, the micro-bubbles can be roughly classified into saturation molding, cavitation and rotation flow types. The objective of this study was to use ventilated tube type as a method of generating micro-bubbles in order to purify large amount of water quality such as lakes and reservoirs. This method shows a difference in efficiency in which micro-bubbles are generated depending on the contact ratio of gas to liquid. The study also investigated the optimal gas liquid contact ratio by applying various orifice methods and investigated the optimum condition of micro-bubble generation by gas Based on this, a technology to develop a micro-bubble generator with a venturi type nozzle shape that has a high water purification effect was developed.

Decarbonization Kinetics of Molten Iron by Ar+O2 Gas Bubbling (Ar+O2 혼합가스 취입에 의한 용철의 탈탄 반응속도)

  • Sohn, Ho-Sang;Jung, Kwang-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.107-113
    • /
    • 2009
  • Molten iron with 2 mass % carbon content was decarbonized at 1823 K~1923 K by bubbling $Ar+O_2$ gas through a submerged nozzle. The reaction rate was significantly influenced by the oxygen partial pressure and the gas flow rate. Little evolution of CO gas was observed in the initial 5 seconds of the oxidation; however, this was followed by a period of high evolution rate of CO gas. The partial pressure of CO gas decreased with further progress of the decarbonization. The overall reaction is decomposed to two elementary reactions: the decarbonization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of carbon and oxygen contents in the melt and the CO partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model. Based on the present model, it was explained that the decarbonization rate of molten iron was controlled by gas-phase mass transfer at the first stage of reaction, but the rate controlling step was transferred to liquid-phase mass transfer from one third of reaction time.

Study on the Characteristics of Long Wave Infrared Signal by Water Injection around the Exhaust Plume of the Micro-jet Engine (마이크로 제트엔진 배기플룸 주위 물 분사에 따른 장파장 적외선 신호특성 연구)

  • Yu, Gunwon;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.28-39
    • /
    • 2022
  • An experimental study was carried out to understand the characteristics of the long wave infrared signal emitted from the exhaust plume when water is sprayed around it. The micro-jet engine was used to generate the exhaust plume, and eight water spray nozzles were installed around the exhaust nozzle. Two water injection angles were applied, one is sparying parallel to the exhaust plume, and the other is spraying water into the exhaust plume. The measurement results are as follows. When spraying water parallel to the exhaust plume, the long wave infrared signal is decreased with water spray flow rate. When spraying water the exhaust plume, the long wave infrared signal shows a larger value than plume only.

A Behavior of the Ultrasonically-atomized Kerosene Lifted-flame According to the Position of Ultrasonic Standing-wave Field (정상초음파장의 위치에 따른 초음파 무화 케로신 부상화염의 거동)

  • Chang Han Bae;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • A study was conducted to scrutinize the behavior of the ultrasonically-atomized kerosene lifted-flame according to the carrier gas flow-rate and position of ultrasonic standing wave (USW). The combustion region of the kerosene-aerosol generated through a slit-jet nozzle was visualized using a DSLR, ICCD, high-speed camera, and Schlieren technique, and the fuel consumption was measured by using a precision balance. As a result, the flame was confined within the region bounded by the USW-field, and the fuel consumption decreased as the position of the USW field increased.

A real scale test on performance of water spray systems in tunnel fire (터널화재시 물분무소화설비의 성능에 대한 실대시험)

  • Park, Kyung-Hwan;So, Soo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.341-347
    • /
    • 2010
  • The performance of water spray system installed to reduce risks of tunnel fire is investigated by a real tunnel fire test. In case of A class fire, Pool fire, and car fire, the nozzle of water spray has had a marvelous effect to reduce the temperature of hot smoke. And it is verified to have remarkable cooling effects when there is the air flow in a tunnel. Though this results, water spray system will be able to prevent a fire jump to decrease the air temperature in a tunnel and to protect tunnel facilities by the fire control.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique (입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석)

  • Sang-Min Chung;Seungwoon Park;Euikeun Choi;Soobin Oh;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.