• 제목/요약/키워드: Nozzle expansion

Search Result 201, Processing Time 0.028 seconds

Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine (부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구)

  • Cho Chong-Hyun;Choi Sang-Kyu;Cho Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.13-19
    • /
    • 2006
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

Concept Design of 1700kN class LRE System using UDMH-LOX(I) (1700kN급 UDMH-LOX 계열 액체로켓엔진 시스템 개념설계(I))

  • Gostev V.A.;Lim SeokHee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.157-161
    • /
    • 2004
  • The colse type of engine system, in which the combustion gas after the gas-turbine with high temperature is supplied to the combustion chamber, was selected to increase the energy characteristics in making the rocket engine scheme which makes 1700kN thrust. The nozzle was designed with consideration of film cooling, nozzle efficiency, and the real state of cobmustion gas during the expansion in nozzle. The change of gas state and the composition of the gas through the nozzle was studied by the graphic, too.

  • PDF

An experimental study on the expansion loss of a supersonic turbine with the cascade position (익렬 위치에 따른 초음속 터빈의 확산 손실에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.387-392
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments are performed to find flow characteristics of supersonic turbine with the cascade positions and to find factor of expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. Firstly, the flow was visualized by Z-type Schlieren system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF

Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet (축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF

Preparation of composite particles by Rapid Expansion of Supercritical fluid Solutions and Release behavior

  • Ryu, Han-Won;Kim, Jung-Hwan;Kim, Young-Do;Shin, Kun-Chul
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.117-121
    • /
    • 1998
  • The Rapid Expansion of supercritical fluid Solutions (RESS) process was applied to particles coating. Experiments were conducted in a fluidized bed with an internal nozzle in the center of the reaction tube. Microcapsules (mean particle size : 49$\mu\textrm{m}$) prepared by spray drying method were used as the core particles. Supercritical CO2 solutions of paraffin were expanded through the nozzle in to the bed that was fluidized by air. Surface morphology prepared particles was observed by SEM. For the inspection of particle size change, particle size distributions were measured before and after coating. The releasing behavior of Mg2+ ions inspected by AA.

  • PDF

NAVIER STOKES COMPUTATIONS ON A TWIN ENGINE NOZZLE-AFTERBODY

  • Gogoi, A.;Sundaramoorthi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.761-770
    • /
    • 2008
  • The report presents turbulent Navier Stokes computations on twin engine afterbody model with jet exhaust. The computations are carried out for free-stream Mach number of 0.8 to 1.20 and jet pressure ratio of 3.4 to 7.8. The Spalart-Allmaras turbulence model is used in the computations. Comparison is made with experimental data and Cp distribution around the afterbody is found to agree well with experiments. Flow features of the exhaust jet like under expansion, over expansion, Mach discs, etc are well captured. The effect of nozzle pressure ratio and flight Mach number are studied in detail. These computations serve as validation of the in-house code for twin jet afterbody.

  • PDF

A Study on the Nozzle-Rotor Interactions of Partial Admission Supersonic Turbines (부분입사형 초음속 터빈의 노즐과 익렬의 상호작용에 관한 연구)

  • Seong Young-Sik;Han Seong-Hoon;Kim Kui-Soon;Park Chang-Kyoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.53-60
    • /
    • 2004
  • In order to investigate the nozzle - rotor interactions and the effect of partial admission, the flows in supersonic turbine rotor cascades with a nozzle have been computed. Extensive computations of partial admission supersonic turbines provide the shock structures and flow patterns in the nozzle and rotor. The governing equations were discretized with Euler implicit method in time and 2nd-order upwind scheme of FVM in space. The $\kappa$-$\varepsilon$ turbulence model was utilized to describe the turbulent flow field. It is clearly shown that the nozzle flow is highly affected by the shocks or expansion waves propagated from the rotor leading edge. And the rotor flow is also affected by the shocks or wakes originated from the nozzle.

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF

Flow Characteristics of 2 Dimensional Supersonic Nozzle in Overexpanded Conditions (2차원 초음속 노즐의 과대팽창 유동 특성)

  • 김성돈;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • In the modern propulsion systems, requited thrust is obtained using a nozzle. Sometimes shock and induced boundary layer separation is generated in an over-expanded convergent-divergent supersonic nozzle. It occurs because the nozzle expansion ratio is too large for a given nozzle pressure ratio (NPR). This phenomenon can be explained that it redefines effective nozzle geometry, shorer nozzle geometry and lower pressure ratio, in a given pressure ratio. Numerical studies were conducted about a fixed geometry 2D nozzle in overexpanded condition and compared with Hunter's experimental result. For the numerical simulation of the supersonic nozzle, Navier-Stokes equations are considered and as a turbulent model, $\kappa$-$\varepsilon$ /$\kappa$-$\omega$ blended SST two equation turbulent model is used. The characteristics of $\lambda$-shape shock systems due to the interaction of shock and boundary layer was investigated in a low NPR. And the result of comparison of thrust value shows that a fixed geometry nozzle can cover required flight mission.