• Title/Summary/Keyword: Nozzle Shape

Search Result 433, Processing Time 0.03 seconds

Analysis of drilling performance and shape for granite according to operating parameters of waterjet nozzles (복수의 워터젯 노즐 운용변수에 따른 화강암 천공성능 및 형상 분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Hong, Eun-Soo;Jun, Hyung-Woo;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.589-604
    • /
    • 2021
  • Waterjets for rocks have various advantages of the non-contact and eco-friendly excavation using only water and abrasive. To overcome the problems (e.g., dust and noise occurrence) of the conventional drilling methods, waterjet excavation methods are broadly used. It is advantageous to operate a couple of nozzles in order to increase the waterjet excavation efficiency. When multiple nozzles are used, it is essential to analyze the excavation performance and shape according to the nozzle operation method. In this study, nozzle angle, horizontal distance between nozzles, and standoff distance were defined as nozzle operating parameters and the excavation performance and shape were analyzed. As a result of the experiment, when the nozzle angle and standoff distance are increased, the excavation depth is decreased and the effective depth tends to be increased. In addition, based on the experimental results, the excavation shape criteria required for nozzle insertion were proposed and optimal nozzle operating parameters were derived according to the criteria. This study result is expected to be used as useful basic research in the future development of multiple waterjet nozzles for rock drilling.

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

Development of Swirl Disc Nozzles for Knapsack Sprayers (배부식 방제기를 위한 디스크형 노즐 개발)

  • Gwak H.H.;Kim Y.J.;Rhee J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.153-160
    • /
    • 2006
  • This study was performed to evaluate some geometrical characteristics of disc type swirl nozzles and to develop nozzles having improved spraying performance for knapsack sprayers. Considered geometrical characteristics of the nozzles were disc thickness, orifice diameter, swirl chamber diameter and shape of the swirl chamber (nozzle chamber). 3 types of nozzle cores were compared. Main results of this study were as follows. 1. Spraying angle (A) was increased with decreasing disc thickness (x), and with increasing orifice diameter (y) or spraying pressure (z). The equation was as a follow. $$A=3.95\frac{1}{x}+73.50\sqrt{y}+18.97\sqrt{z}-60.16$$ 2. Spraying flow rate (F) was increased with decreasing disc thickness (x), and with increasing orifice diameter (y) or spraying pressure (z). The equation was as a follow. $$F=-89.95x+611.09y+620.49\sqrt{z}-868.20$$ 3. Mean spraying droplet size (V) was decreased with decreasing disc thickness (x), with increasing orifice diameter (y) in low spraying pressure, with decreasing orifice diameter (y) in high spraying pressure, and with increasing spraying pressure (z). $$V=148.77x^4-746.85x^3+1311.76x^2-917.31x$$ 4. The spray pattern was compared using CV values. The CV value of the nozzle core type 1 was 26.7% in spraying pressure $3\;kgf/cm^2$, the CV value of the core type 2 was 23.6% in spraying pressure $2\;kgf/cm^2$, the CV value of the core type 3 was 20.6% in spraying pressure $1\;kgf/cm^2$. 5. Minimum spraying pressure was improved from $1.5\;kgf/cm^2\;to\;1.0\;kgf/cm^2$ by changes of nozzle core shape.

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF

Structural Analysis of High Pressure Injection Nozzle (고압 분사노즐의 구조해석)

  • 원종진;이종선;윤희중;김형철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.69-74
    • /
    • 2002
  • This study is object to structural analysis of high pressure injection nozzle. The finite element model was developed to compute the stress, strain for high pressure injection nozzle. For structural analysis using result from FEM code. This structural analysis results, many variables such as internal pressure, boundary condition, constraint condition and load condition are considered.

  • PDF

Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle (추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

Numerical Investigation of Flow Structures near Various Nozzle Exit Geometries of the Air Bearing (공기베어링의 노즐 형상 변화에 따른 출구면 근방의 유동구조에 대한 수치해석)

  • Park, Byung Ho;Han, Yong Oun;Park, Sang-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 2014
  • To investigate pressure distributions on the shaft surface of the air bearing, the commercial CFD software was employed to study three different nozzle geometries to improve the nozzle performance: general drill-shaped, matched cube-shaped and trimmed exit nozzles. Under the influence of stagnation point, the maximum pressure was observed at the center of shaft surface for all cases. Owing to the blocking effect of a fine gap between the shaft surface and the nozzle exit, the drill-shaped nozzle has the rapid local pressure increase near the nozzle exit corner, generating the ring vortex in the radial direction within pressure ratio of 6.92, and its pressure becomes negative in a certain range of downstream. In comparison, the contoured nozzle showed a local pressure increase in the measured range of pressure ratios, but a negative pressure appeared within the pressure ratio of about 10. The trimmed nozzle was seemed to extend the high pressure zone near the stagnation point in the radial direction substantially, and no negative pressure was appeared in the whole range. Based on these observations, it is found that trimming nozzle exit becomes more effective for improving the performance than modifying the nozzle inside contour.

Numerical Simulation of an Impinging Jet with Various Nozzle-to-strip Distances in the Air-knife System

  • So, Hong-Yun;Yoon, Hyun-Gi;Chung, Myung-Kyoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.239-246
    • /
    • 2010
  • When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of the adhered zinc film is controlled by impinging a thin plane nitrogen gas jet. The thickness of the zinc film is generally affected by impinging pressure distribution, its gradient and shearing stress at the steel strip. These factors are influenced by static pressure of gas spraying at air knife nozzle, a nozzle-to-strip distance and strip and a geometric shape of the air knife, as well. At industries, galvanized steel strip is produced by changing static pressure of gas and a distance between the air knife nozzle and strip based on experimental values but remaining a geometric shape of nozzle. Splashing and check-mark strain can generally occur when a distance between the air knife nozzle and strip is too short, while ability of zinc removal can lower due to pressure loss of impinging jet when a distance between the air knife nozzle and strip is too long. In present study, buckling of the jet and change of static pressure are observed by analyzing flow characteristics of the impinging jet. The distance from the nozzle exit to the strip varies from 6 mm to 16 mm by an increment of 2 mm. Moreover, final coating thickness with change of a distance between the air knife nozzle and strip is compared with each case. An ability of zinc removal with the various distances is predicted by numerically calculating the final coating thickness.

Numerical Analysis on the Flow Characteristics of Side Jet Thruster (Side Jet 발생기의 유동특성에 관한 해석)

  • Hong S. K.;Sung W. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.27-31
    • /
    • 2001
  • For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful device as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. In this paper, the aerodynamic characteristics of the side jet device itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. Specifically attention is paid to the effect of the chamber shape between the straight nozzle and the bent nozzle by 90 degrees on the nozzle flow properties. The thrust magnitudes are compared between the two shapes. Whether the way the nozzle is bent at the joint affects the nozzle performance is also investigated. Effects of the length and the divergence angle of the nozzle on the thrust are also quantified among three different side jet nozzles.

  • PDF

Supersonic Plug Nozzle Design and Comparison to the Minimum Length Nozzle Configuration

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2006
  • A method to design the contour and conception of a plug nozzle of arbitrary shape, but specified exit flow conditions is presented. Severals shapes can be obtained for exit Mach number by changing the specific heats ratio. The characteristics of the nozzle in terms of length, weight and pressure force exerted on the wall are compared to the Minimum Length Nozzle and found to be better. Our field of study is limited to the supersonic mode to not to have the dissociation of the molecules. The design method is based on the use of the Prandtl Meyer function of a perfect gas. The flow is not axial at the throat, which may be advantageous for many propulsion applications. The performance benefits of the plug nozzle compared to the Minimum Length Nozzle are also presented.